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A Assortative Matching

Chade and Eeckhout (2018) study optimal matching in an information environment re-

lated to ours. In theirs, the correlation between signals is constant, but precisions may be

heterogeneous. They show that if utilities are transferable and each worker produces only

one signal, the reduced form utility obtained from forecasting the state is submodular for

a wide range of correlations. Therefore, if teams are composed of two workers, optimal

matching is negative assortative: the best worker matches the worst worker, the second

best matches the second worst, and so on.

In our environment, workers strategically choose the number of signals they produce

and transfers are not possible. Moreover, correlation varies, but precisions are held con-

stant. To isolate the effects of the first two features of our model, we assume in this section

that precisions vary, but correlation is held to zero. Our main conclusion is that, perhaps

unsurprisingly, it need not be true that the negative assortative matching maximizes wel-

fare, nor that it emerges endogenously.1
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1That utilities are nontransferable is not necessary to revert their result, but we keep it to preserve
the structure of the game we study. Following our approach, the equilibrium of the production game is
inherently inefficient due to its public goods nature, while in a fully transferable world this inefficiency
disappears. We focus on whether negative assortative matching is optimal given the equilibrium played
inside each team.



Suppose each worker produces conditionally independent signals with precisions τ1 <

τ2 < . . . < τN . As in the main text, suppose each agent receives the quadratic loss of her

team’s optimal forecast and that a team has at most two workers. Then, if workers i and j

are in a team together, and produce ni and nj signals, the utility loss associated with their

forecast is

− 1
τθ +niτi +njτj

.

An application of Proposition 2 of Chade and Eeckhout (2018) implies that the posterior

variance is submodular in niτi . Consequently, negative assortative matching with respect

to niτi is optimal when workers are forced to choose one signal.

We consider what happens when i and j are free to choose the number of signals they

produce. For simplicity, suppose worker i can produce signals with unit variance, the

prior variance is equal to unity, and the cost of drawing n signals is c(n) = 0.001n2. Figure

6 presents the resulting PEN correspondence and shows that, as worker j’s signal variance

increases, equilibria become asymmetric. Why? Since each of worker j’s signals produce

less information, fixing ni and nj , the marginal value of worker j’s last signal decreases.

On the other hand, the marginal value of a signal for worker i increases. Both forces lead

to asymmetry.
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Figure 6: PEN Correspondence when ρij = 0 and τi = 1.

The implications of this behavior for team formation are stark. Suppose that there

are four workers with variances 0.25, 0.5, 1 and 1.25. If we match the best worker (the

one with variance 0.25) with the worst worker (the one with variance 1.25), the unique

PEN played within the team is (2,0); the worst worker does not contribute at all. In
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contrast, when the worst worker is paired with the worker with variance 1, the unique

PEN is (2,1). Consequently, for small team membership costs, the optimal matching

is {(0.25,1), (0.5,1.25)}, instead of the negative assortative matching, {(0.25,1.25), (0.5,1)}.

Moreover, it turns out that the optimal matching can be decentralized as a core allocation,

while the negative assortative matching cannot.

B PEN Characterization Conditions are Necessary

Consider the equilibrium correspondence presented in Figure 7, where σ2 = 1
4 < 1 = σ2

θ

violates the sufficient condition for the third and fourth properties in Proposition ??. In

Figure 7, while for ρ = −0.29 there is a unique and asymmetric PEN, for a slightly higher

correlation there is a unique and symmetric PEN.
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Figure 7: Equilibrium correspondence when c(m) = 0.019m, σ2 = 1
4 and σ2

θ = 1.

Why does this happen? When n = 1, for ρ = −0.29 ∈ (ρ̂, ρ̃) the marginal value of a signal

for a high producer is greater than the marginal value of a signal for a low producer. We

may then fix the marginal cost of a second signal so that the high producer wants to

produce it. But then, if ρ increases, the marginal value of the low producer increases

and may exceed the chosen marginal cost, so that she wants to produce a second signal

as well. If the low producer produces a second signal, however, the high producer has

no incentive to produce a third signal because the information left to learn decreases

sufficiently. Hence, a symmetric equilibrium (2,2) is played.
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Worker i

H L

Worker j
H p2 + ρijp(1− p) p(1− p)(1− ρij)

L p(1− p)(1− ρij) (1− p)2 + ρijp(1− p)

Figure 8: Joint distribution when state is High (H).

C Binary States, Binary Signals

Suppose that the state θ is either High (H) or Low (L). For simplicity, suppose further

that P r(θ = H) = 1
2 . Each worker can produce an informative signal, with realization H

or L realization, and it equals to the true state with probability p > 1
2 . Figure 8 presents

the joint distribution over signal realizations when the state is H . If the state is L, the

elements of the main diagonal are switched.

Notice that in this environment the feasible set of correlations is bounded below. In

particular, statistical feasiblitiy requires that ρij ≥ −
1−p
p . Hence, when a couple compares

signals and has the most feasible negative correlation they need not learn the state; the

state is revealed if HH (or LL) is observed, but not given any other realization. Further,

for any correlation, there is a positive probability that HL or LH is observed.

There is no simple expression for the expected posterior variance for an arbitrary pro-

file of signals. Nonetheless, Table 6 computes it for a number of cases; these values are

enough to find the PEN of the Production Subgame when each worker’s best response is

bounded by three. Defining ρ̃(t,p) and ρ̂(t,p) as in the main text, Figure 9 displays their

values when t = 2. The figure shows that it is still true that we have ρ̃(2,p) > ρ̂(2,p) if and

only if the precision of the signal is high enough. We suspect a similar result is true for

larger t.

D Sequential versus Simultaneous Decision

In this section, we present a finite sequential version of the game played within each

team. We assume that the total number of periods T ≥ 2M̄, where M̄ is the upper bound
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Table 6: Expected Posterior Variance in the two-state model for some strategies.

# signals i # signals j Expected Posterior Variance

0 0 1
4

1 0 p(1− p)

1 1 p(1− p)
(

(p+ρij (1−p))(1−p+ρijp)
p2+(1−p)2+2ρijp(1−p) + 1

2
(1−ρij )

)
2 0 p(1− p)

(
p(1−p)

p2+(1−p)2 + 1
2

)
2 1 p2(1− p)2

(
(p+ρij (1−p))(1−p+ρijp)
p3+(1−p)3+ρijp(1−p) + 2(1− ρij) +

(p+ρij (1−p))(1−p+ρijp)
(1+ρij )p(1−p)

)
2 2 p2(1− p)2

(
(p+ρij (1−p))2(1−p+ρijp)2

(p2+ρijp(1−p))2+((1−p)2+ρijp(1−p))2 +
(p+ρij (1−p))(1−p+ρijp)

2p(1−p)

+(1− ρij)2 +
4(1−ρij )(p+ρij (1−p))(1−p+ρijp)

p2+(1−p)2+2ρijp(1−p)

)
3 0 p2(1− p)2

(
p(1−p)

p3+(1−p)3 + 3
)

3 1 p2(1− p)2
(

p(p−1)(p+ρij (1−p))(1−p+ρijp)
p2(p2+ρijp(1−p))+(1−p)2((1−p)2+ρijp(1−p)) + (1− ρij) +

2p(1−p)(1−ρij )
p2+(1−p)2

+
2(p+ρij (1−p))(1−p+ρijp)
p2+(1−p)2+2ρijp(1−p) +

(p+ρij (1−p))(1−p+ρijp)
p(1−p+ρijp)+(1−p)(p+ρij (1−p))

)
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Figure 9: Values ρ̃(2,p) and ρ̂(2,p) for different signal precisions p.
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on best responses described in Lemma ??. In each period, each worker chooses whether

or not to produce a signal ait ∈ {0,1}. Signals across periods are conditionally independent

and signals in the same period are correlated according to the pairwise correlation of

teammates, ρ. In period t, all workers observe all actions at−1 and signals xt−1 in periods

1, ...t − 1; the public history at period t is given by ht−1 = (ar ,xr)
t−1
r=1 where ar = (a1

r , a
2
r ) .

Let H t−1 denote the set of feasible histories up to period t. Then, a strategy for worker

i is a function si :
⋃T
t=1H

t−1 → {0,1}. The expected payoff of worker i given the history

(ar ,xr)
T
r=1 is:

v
(i,j)
i (((ar)

T
r=1)) = − 1(

2
1+ρij

∑T
r=1 a

1
r a

2
r +

∑T
r=1

(
a1
r + a2

r − 2a1
s a

2
r

))
σ−2 + σ−2

θ

− c

 T∑
r=1

air

 .
We refer to the equilibrium outcome number of signals as (n1,n2), where ni =

∑T
r=1 a

i
r .

We consider Subgame Perfect Equilibria that are not Pareto Dominated by any other

Subgame Perfect Equilibrium– call such an equilibrium a Pareto-Efficient Subgame Per-

fect Equilibrium (PESP). The next proposition states that, if there is a PEN in the simul-

taneous game in which strategies differ by at most 1, there is an identical PESP outcome

of the sequential game.

Proposition 3 Let (m1,m2) be the most symmetric PEN in the simultaneous game. If |m1 −m2| <

2, there is a PESP of the sequential game with outcome (n1,n2), where n1 =m1 and n2 =m2.

Proof After every history ht−1 each worker knows the posterior variance of θ, which we

denote by σ t(ht−1). We define three automaton states: WN ,WD1
,WD2

. WN is the state at

which no worker deviates,WD1
is the state at which worker 1 is the last deviator, andWD2

is the state at which worker 2 is the last deviator. Consider the strategy profile

si(h
t−1) =

 1 if ni(σ t(ht−1)) ≥ T − t

0 otherwise
,

where ni(σ t(ht−1)) is the number of the most symmetric equilibrium given the prior vari-

ance σ t(ht−1) and without loss n1(σ t(ht−1)) ≥ n2(σ t(ht−1)). Off the path of play choose any

Nash equilibrium of the Subgame. If a worker deviates from the prescribed strategy pro-
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file then he takes the largest number of signals implied by this Nash equilibrium in the

subgame that follows after.

To see why no worker has an incentive to deviate, notice if worker 1 does not produce a

signal when she is prescribed to do so, then she can never produce as many signals as she

was initially prescribed. But as |n1 −n2| < 2, worker 2 cannot compensate for worker 1’s

deviation. As worker 1 prefers to produce n1 instead of n1−1 signals in the simultaneous

game, she has no incentive to deviate. A similar argument applies for worker 2.

The following example shows why we cannot extend the proposition to all correla-

tions. Suppose σ = σθ = 1 and c(m) = 0.05m. If ρ = 0.15, the only equilibrium in the

simultaneous game is (3,0). However, in the sequential game this cannot be a Subgame

Perfect Equilibrium. Suppose worker 1 deviates and decides to produce only one signal

in each of the last two periods. Then, the best response of worker 2 is to produce a signal

in period T − 1 or period T . This outcome gives worker 1 a payoff of −0.367 instead of

−0.4.2

However, for large correlations, the same deviation is not profitable for worker 1 since

worker 2 will never want to produce a signal in period T or period T − 1. If both work-

ers produce a signal during the same period, they would be highly correlated. Hence,

worker 2 would not have incentive to produce a signal, since the extra information that is

produced by her signal is almost zero. This observation illustrates that, for intermediate

correlations, inefficiency due to asymmetric equilibria may be smaller in the extensive

game than in the simultaneous game.

Although our intuition suggests that all equilibria of the simultaneous game are more

asymmetric than all equilibria of the sequential game, this may not be true. In the fol-

lowing example, there is an asymmetric equilibrium of the sequential game that is more

asymmetric than the most symmetric equilibrium of the simultaneous game. Further-

more, it is not an equilibrium of the simultaneous game. Consider the example in Figure

10 in which we graph the equilibrium correspondence of the simultaneous game. For

correlation ρ = 0.1, the profile (3,2) is the most symmetric equilibrium in the simultane-

2In the unique Subgame Perfect Equilibrium, up to identity, worker 1 produces 2 signals and worker 2
produces 1 signal, with no signals taken in the same period.
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ous game and (4,1) is not an equilibrium. However, in the sequential game, the on-path

sequence (ar)
T
r=1, with a2

T = 1, a1
r = 1 for r = T − 4,T − 3,T − 2,T − 1 and air = 0 in any

other period, is consistent with a PESP. Notice, all signals are taken in different periods

and (4,1) is the outcome number of signals. A deviation by worker 1 at period T − 4 is

not necessarily followed by an increase in the number of signals by worker 2, since an

extra signal by her implies acquiring correlated information. It can be shown that a Nash

equilibrium of the Subgame following such a deviation is (3,1). As (4,1) is preferred by

worker 1 to (3,1), worker 1 does not have the incentive to deviate at T − 4. A similar

argument applies for deviations in other periods.

Figure 10: Equilibrium strategies when c = 0.01n, σ = 1
2 , and σθ = 1.

E Continuous Action Space

In our model, the informativeness of a signal is scaled by its precision. In this section, we

modify the production game by making signals more imprecise and scaling the cost so

that there is no “free lunch” effect. This allows us to find a limit game where the action

space is continuous.
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Let us consider a sequence of games in which each signal becomes less informative. In

the kth game, k signals are equivalent to a single signal of the original game. That is, the

variance in the kth game, σ2
k , is equal to kσ2, where σ2 is the variance of each signal in the

original game. For simplicity, we assume that the cost of taking a signal is linear. No free

lunch implies that in the kth game the cost of a signal is c
k , where c is the cost of a signal

in the original game. Suppose workers i and j are in a team together and the correlation

between their signals is ρ. Then in the kth game, if they choose nki and nkj signals, worker

i’s payoff is given by

v
(i,j)
i (nki ,n

k
j ) =


min

nkik , n
k
j

k

 2
1 + ρ

+

∣∣∣∣∣∣∣n
k
i

k
−
nkj
k

∣∣∣∣∣∣∣
σ−2 + σ−2

θ


−1

− c
nki
k
.

Notice that for any real number z and fixed ε > 0, there exist rational numbers k and

n such
∣∣∣nk − z∣∣∣ < ε. Therefore, the sequence of games converges to the game where player i

chooses ri ∈R+ and, if workers choose ri and rj signals, worker i’s payoff is given by

v
(i,j)
i (ri , rj) =

−σ2

(r ij(φij − 1) + r̄ij) +γ
− cri ,

where r ij = min{ri , rj}, r̄ij = max{ri , rj}, φij = 2
1+ρij

and γ = σ2

σ2
θ

.

As in the discrete game, workers i and j’s payoff when in a team together depend on

a factor φij ∈ [1,∞) that specifies the team’s productivity. The equilibrium correspon-

dence is similar to the one described in the main text and characterized in the following

proposition.

Proposition 4

• If φij < 2, the unique Nash equilibrium, up to the identity of the workers, is
(
0,

√
σ2

c −γ
)
.

• If φij = 2, any strategy profile such that ri + rj =
√
σ2

c −γ is a PEN.

• If φij > 2, the only PEN is

ri = rj =

√
σ2(φij−1)

c −γ
φij

.
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Proof Suppose ri > rj . Then, the marginal value of ri for worker i is,

σ2(
rj(φij − 1) + ri +γ

)2

and the marginal value of rj for worker j is,

(φij − 1)σ2(
rj(φij − 1) + ri +γ

)2 .

If φij < 2 the marginal value for worker j is always smaller than worker i’s marginal

value, so there is a corner solution in which rj = 0. Given rj , i’s best-response is ri =√
σ2

c −γ .

If φij = 2, the marginal value of a signal is the same for both workers. Optimally,

each chooses r so that the marginal value equals the marginal cost. Since any investment

division between the workers does not affect the marginal output, any profile (ri , rj) such

that ri + rj =
√
σ2

c −γ is an equilibrium.

If φij > 2, it cannot be the case that ri > rj since the marginal benefit for worker j is

strictly larger and both workers face the same marginal cost. Hence, all equilibria are

symmetric. For (r, r) to be an equilibrium, it must be the case that:

σ2(
rj(φij − 1) + ri +γ

)2

∣∣∣∣∣∣∣∣
ri=rj

≤ c,

and,
(φij − 1)σ2(

rj(φij − 1) + ri +γ
)2

∣∣∣∣∣∣∣∣
ri=rj

≥ c.

The only PEN is the profile in which r = ri = rj is maximized and satisfies the previous

constraints. Hence, the second inequality binds. Re-arranging yields the equation stated

in the proposition.

The proposition implies that for negative correlations the only equilibrium is sym-

metric, for conditionally independent signals there is multiplicity, and for positive corre-

lations the only equilibrium is fully asymmetric.

10



References

Chade, Hector, and Jan Eeckhout. 2018. “Matching information.” Theoretical Economics,

13(1): 377–414.

11


	Assortative Matching
	PEN Characterization Conditions are Necessary
	Binary States, Binary Signals
	Sequential versus Simultaneous Decision
	Continuous Action Space

