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A principal provides incentives for independent agents. The principal cannot ob-
serve the agents’ actions, nor does she know the entire set of actions available to
them. It is shown that an anti-informativeness principle holds: very generally, ro-
bustly optimal contracts must link the incentive pay of the agents. In symmetric
and binary environments, they must exhibit joint performance evaluation — each
agent’s pay is increasing in the performance of the other, with the degree of this
increase depending on individual performance.
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1. INTRODUCTION

Should members of a group be compensated on the basis of individual performance,
relative to the performance of others, or jointly? Conventional economic wisdom builds
upon the “Informativeness Principle", which states that only signals that are statistically
informative about an agent’s action are valuable for incentive provision (Holmström
(1979), Shavell (1979)). Hence, encouraging competition or cooperation among mul-
tiple agents through relative performance evaluation or joint performance evaluation is
more profitable than independent performance evaluation only if these compensation
schemes better extract information (Holmström (1982)).

In practice, however, joint performance evaluation often appears in settings in
which statistical considerations suggest it is suboptimal. For instance, salespeople may
make sales calls alone. Yet, they are sometimes compensated according to increasing
and nonlinear functions of individual and group revenue (Rees et al. (2003)). Members
of the same company may perform independent tasks. Yet, companies often use bonus
pools to distribute reward pay, with the size of the pool determined by the company’s
overall performance (Benson and Sajjadiani (2018)). Finally, CEO compensation often
exhibits “pay for luck", with remuneration increasing with random positive shocks (Bell
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et al. (2021)). In these settings, independent performance evaluation might be used if
there is insufficient correlation in productivities across agents conditional on their ac-
tions. Otherwise, relative performance evaluation better extracts information than joint
performance evaluation; success in the face of others’ failure is a stronger indicator of
effort than success when others succeed.

This paper provides non-Bayesian foundations for joint performance evaluation in
such settings. The production environment considered is standard. There is a risk-
neutral principal who compensates a finite number of risk-neutral agents. Each agent
takes a hidden action to produce observable individual output. The agents are protected
by limited liability. Hence, “selling the firm" to the agents is infeasible and there is a
trade-off between incentive provision and rent-extraction (see, e.g., Chapter 4 of Laffont
and Martimort (2009)).

Agents are commonly known to be independent; there is no correlation in output
conditional on agents’ actions and no agent can directly affect the output of any of the
others. The purpose of the assumption is to rule out all known mechanisms leading to
interdependent incentive schemes, which rely on productive or informational linkages
across agents (see Section 1.1 for a detailed discussion). It is also a reasonable first-order
approximation of the production environment of many economic agents (e.g., salespeo-
ple, teachers, and fruit pickers).1 To derive foundations for interdependent incentive
schemes, it is instead assumed that, while the principal knows some actions the agents
can take, there may be others she does not know about.2 Following Carroll (2015), the
principal chooses a contract that ensures her the highest worst-case payoff.

The first main result is an “anti"-informativeness principle: robustly optimal con-
tracts must link the incentive pay of independent agents under a wide range of assump-
tions about agents’ behavior. Moreover, the robustly optimal independent performance
evaluation contract is outperformed by a joint performance evaluation contract that re-
sembles a bonus pool (Theorem 1 and Corollary 1). The intuition is as follows. Suppose
there are two agents and each receives a positive wage for individual success. Now, sup-
pose each agent’s wage for individual success is made contingent upon the other’s suc-
cess. Specifically, reduce his wage when the other fails and increase it when the other
succeeds so that, when the other takes his targeted action, expected wages are held con-
stant. Then, incentives to shirk are also held constant. Nevertheless, when both agents
actually shirk — the “bad" state of the world that matters under robustness considera-
tions — the principal pays each strictly less than under independent performance eval-
uation (see Example 1).

The second main result is that joint incentives are uniquely optimal in a canonical
partial-implementation setting in which there are two agents with the same set of known
actions, two output levels, and the principal is constrained to use symmetric contracts
(Theorem 2). Interestingly, there does not exist a relative performance evaluation con-
tract that yields the principal a strictly larger payoff than the optimal independent per-
formance evaluation contract (Lemma 2). In contrast to joint performance evaluation

1See Hackman (2002) pages 42-43 for additional examples.
2It is worth remarking that there are no symmetry assumptions made on the set of uncertainty; actions

need not be common across agents. An earlier version of this paper analyzes the case in which the principal
knows that the agents possess a common action set.
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contracts, these contracts increase expected wage payments when agents shirk, elimi-
nating any of their incentive advantages (see Example 2).

The results provide a plausible explanation for several of the joint incentive schemes
mentioned in the motivating applications. For instance, in a sales context, group man-
agers may know some tactics of their sales representatives — representatives can always
follow the company’s script. But, there are a myriad of less costly (but, potentially less
productive) ways in which a sales representative might deviate from this script. Thus, a
manager might use team-based incentive pay to reduce expected wage payments if her
subordinates discover such tactics. Regarding bonus pools, empirical work has found
that these schemes are not particularly beneficial for firm productivity (Benson and Saj-
jadiani (2018)). But the analysis in this paper shows that this is not a requirement for
their profitability; it is only important that the size of the pool is sufficiently responsive
to firm performance. The results also contribute to the debate surrounding executive
compensation. Within a firm, it may make sense to compensate all executives on the
basis of the firm’s overall performance. But, to capture the rent-extraction benefits of
joint performance evaluation, it is important that this pay responds as much to declines
in performance as it does to increases in performance. This is not always the case in
practice, as shown by Bell et al. (2021).3

1.1 Related Literature

This paper makes two main contributions to the theoretical literature. First, it estab-
lishes a fundamentally new justification for team-based incentive pay. In the Bayesian
contracting paradigm, the Informativeness Principle prescribes independent perfor-
mance evaluation whenever one agent’s performance is statistically uninformative of
another’s action. Hence, if the set of actions available to agents in a team is common
knowledge, then it is impossible to improve upon independent performance evaluation.
To justify incentive schemes commonly used in practice, such as relative performance
evaluation and joint performance evaluation, the literature has instead introduced pro-
ductive and informational linkages among agents.4 Specifically, one agent’s action ei-
ther has a direct effect on another’s performance or there is correlation in performances
conditional on an action profile. The model studied in this paper explicitly rules out
these channels.

Second, it contributes to the literature on robust contracting by considering a multi-
agent environment in which the principal’s uncertainty set is bounded.5 The pioneering

3Members of a board of directors may also wish to tie the pay of a CEO to the performance of other firms
in the same industry. But, to capture the benefits of joint incentives, it is important for members of the
board to also control the incentives of the CEOs of these other firms. This type of ownership structure is
typically prohibited by conflict-of-interest regulations.

4In the absence of productive interaction, joint performance evaluation may be optimal if agents are
affected by a common, negatively correlated productivity shock (Fleckinger (2012)). In the absence of a
common shock, joint performance evaluation may be optimal if efforts are complements in production
(Alchian and Demsetz (1972)), if it induces help between agents (Itoh (1991)) or, alternatively, if it discour-
ages sabotage (Lazear (1989)). Finally, joint performance evaluation may be optimal if agents are engaged
in repeated production and it allows for more effective peer sanctioning (Che and Yoo (2001)).

5Related work not discussed here include the papers of Hurwicz and Shapiro (1978), Garrett (2014),
Frankel (2014), and Rosenthal (2020), who consider contracting with unknown preferences; Marku et al.
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work of Carroll (2015) considers a principal-single agent model in which the principal
has non-quantifiable uncertainty about the actions available to the agent. His main re-
sult is that there exists a robustly optimal contract that is linear in individual output.
The model and analysis in this paper enrich that of Carroll (2015) by introducing seem-
ingly irrelevant agents and showing that multiple agents lead to the optimality of joint
incentive schemes.6

Dai and Toikka (2022) extend the analysis of Carroll (2015) to multi-agent settings,
but consider a model in which the principal deems any game the agents might be play-
ing plausible. In this setting, they find that contracts that are linear in team output are
worst-case optimal under partial Nash implementation. This result is driven by the find-
ing that any contract that induces competition between agents is non-robust to games
in which one agent’s action can directly influence the productivity of another. In con-
trast to Dai and Toikka (2022), this paper considers a setting in which the principal knows
that output is independently distributed across agents. This has the immediate effect of
ruling out such games and ensuring that linear contracts are suboptimal in performance
indicators. Despite these differences, the results and management implications of this
paper complement Dai and Toikka (2022). Agents in Dai and Toikka (2022)’s model are a
“real team" in the sense that they work together to produce value for the principal, while
agents in the model of this paper are best thought of as “co-actors" given the assumption
of technological independence (Hackman (2002)). Yet, in either case, joint performance
evaluation is optimal. What changes is the particular form of the optimal joint perfor-
mance evaluation contract — in the case of a real team, optimal compensation is always
linear in the value the team generates for the principal, while in the case of co-acting
agents it is always nonlinear and may involve bonus payments that reward each agent
for others’ success in a manner proportional to their individual contribution.

2. MODEL

2.1 Environment

A risk-neutral principal writes a contract for risk-neutral agents, indexed by i= 1,2, ..., n.
Agent i’s output, yi, is observable and belongs to a compact set Y ⊂R+, where max(Y )>

min(Y ) = 0. To produce output, agent i chooses an unobservable action, ai, from a fi-
nite set Ai ⊂ R+ × ∆(Y ), where ∆(Y ) is the set of Borel distributions on Y . Each ac-
tion ai is thus identified by an effort cost, c(ai) ∈ R+, and a distribution over output,
F (ai) ∈∆(Y ). Agents are assumed to be independent — there are no informational or
productive linkages across agents. Formally, the joint distribution over output vectors

(2023), who consider a robust common agency problem; and Chassang (2013), who considers a dynamic
agency problem.

6Building upon Carroll (2015)’s single-agent model, Antic (2015) imposes bounds on the principal’s un-
certainty over the productivity of unknown actions (see also Section 3.1 of Carroll (2015), which studies
lower bounds on costs). In contrast, the model studied here places no restrictions on the technology avail-
able to each agent in isolation beyond those of Carroll (2015). Instead, the restrictions concern the relation-
ship between the agents.
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induced by any action profile is the product of the marginal distributions over individual
outputs,

F (a) := F (a1)× · · · × F (an) ∈∆(Y n) for all a ∈A :=A1 × · · · ×An.

2.2 Contracts

A contract is a function for each agent i,

wi : Y
n →R+,

where the non-negativity restriction in the co-domain reflects agent limited liability (no
agent can receive negative wages). Direct (revelation) mechanisms7 and random mech-
anisms8 are thus ruled out by assumption. It will be useful to classify contracts according
to an extension of the typology of Che and Yoo (2001), who consider binary performance
evaluations.

DEFINITION 1 (Performance Evaluations). A contract w = (wi)i is an

• independent performance evaluation (IPE) if, for all i and yi, wi(yi, y−i) is constant
in y−i;

• a relative performance evaluation (RPE) if it does not exhibit IPE and, for all i and
yi, wi(yi, y−i) is decreasing in y−i;

• and a joint performance evaluation (JPE) if it does not exhibit IPE and, for all i and
yi, wi(yi, y−i) is increasing in y−i .9

2.3 Payoffs

Agent i’s ex post payoff given a contract w, action profile a, and output vector y is

wi(y)− c(ai),

while his expected payoff is

Ui(a;w) := EF (a)[wi(y)]− c(ai).

7It is well known that the principal can partially implement the Bayesian optimal contract technology-
by-technology using a revelation mechanism: she can ask agents to report the action set and, if reports
disagree, punish them with a contract that always pays zero. The interpretation taken in this paper, how-
ever, and in the rest of the literature on robust contracting, is that such a mechanism violates the spirit of the
robustness exercise. The principal would like to avoid changing the contract she offers as the agents’ envi-
ronment varies. The performance of alternative indirect mechanisms, such as offering a menu of contracts,
awaits further study.

8Randomizing over contracts is not helpful if the principal believes that Nature selects the agents’ action
set after her contract is realized. However, if Nature moves simultaneously, then there is scope for ran-
domization to improve the principal’s payoff. See Kambhampati (2023) for an analysis of the single-agent
case.

9Output vectors are equipped with the usual partial order: y′ ≥ y if y′ is weakly larger than y in all com-
ponents. So, a function of output vectors, f , is increasing if y′ ≥ y implies f(y′)≥ f(y).
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The principal’s ex post payoff given a contract w and output vector y is

n∑
i=1

(yi −wi(y)) .

Given a contract w and action set A, the first part of the analysis assumes only that the
principal believes that the agents’ behavior is consistent with common knowledge of
rationality. That is, she assumes play of a (correlated) rationalizabile action profile.10

Let R(w,A)⊆∆(A) be the set of Borel distributions over rationalizable action profiles in
the game Γ(w,A). Then, the non-empty set of expected payoffs obtainable under some
distribution over rationalizable action profiles is

V (w,A) := {Eσ[

n∑
i=1

(yi −wi(y))] : σ ∈R(w,A)}.

2.4 Uncertainty

When the principal writes a contract for the agents, she has limited knowledge about
the action set available to each agent. In particular, she knows only a non-empty subset
of actions available to each agent A0

i ⊆Ai. To rule out uninteresting cases, it is assumed
that, for each agent i, there exists an action a0i ∈A0

i such that EF (a0
i )
[y]− c(a0i )> 0. This

ensures that the principal obtains a strictly positive payoff from contracting with agent i.
In addition, it is assumed that if a0i ∈A0

i , then c(a0i )> 0. This ensures that the principal’s
optimal contract for agent i is different from one that always pays zero. In the face of
her uncertainty, the principal evaluates each contract on the basis of its performance
across all finite supersets of her knowledge, collected in the feasible set of uncertainty
A := {A⊂ (R+ ×∆(Y ))n : |A|<∞ and Ai ⊇A0

i }.

3. ANTI-INFORMATIVENESS PRINCIPLE

Let

vIPE := max
w: w is an IPE

inf
A∈A

max(V (w,A))> 0

be the principal’s highest payoff obtainable under rationalizable behavior given any IPE
contract.11 The first main result is that there exists a JPE contract whose rationalizable
payoffs robustly dominate those obtained under any IPE.

10Correlated rationalizable action profiles are those obtained by iterated elimination of strictly domi-
nated actions. See Brandenburger and Dekel (1987).

11Carroll (2015) establishes the existence of an optimal IPE under principal-preferred action selection.
Under the assumption that known actions are costly, there continues to exist an optimal contract even
under principal least-preferred action selection. Moreover,

vIPE = max
w: w is an IPE

inf
A∈A

min(V (w,A)).
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THEOREM 1 (Anti-Informativeness Principle). For each agent i, there exists a base share,
ϕi > 0, and bonus factor, βi > 0, such that the JPE contract, w, with

wi(yi, y−i) = (ϕi +
βi

n− 1

n∑
j ̸=i

yj)yi for i= 1, ..., n

has rationalizable payoffs that robustly dominate those obtained under any IPE:

inf
A∈A

max(V (w,A))> inf
A∈A

min(V (w,A)) = vIPE .

PROOF. See Appendix A.1.

The JPE contract, w, considered in the statement of Theorem 1 induces a supermod-
ular game among the agents under an appropriately defined partial order on actions, ⪰:
ai ⪰ a′i if either EF (ai)[yi]> EF (a′

i)
[yi], or EF (ai)[yi] = EF (a′

i)
[yi] and c(ai)≤ c(a′i). Hence,

by standard results in the literature on supermodular games (see, e.g., Vives (1990) and
Milgrom and Roberts (1990)), there is a maximal and minimal rationalizable action pro-
file and each profile is a Nash equilibrium. When the parameters (ϕi, βi)i are chosen so
that the principal’s payoff is increasing in the agents’ action profile, it follows that, given
any contract w and action set A, the principal’s rationalizable payoffs are an interval12

I(w,A) = [min(V (w,A)),max(V (w,A))].

Theorem 1 establishes that, for any action set A, all payoffs in I(w,A) are weakly larger
than vIPE and there are a continuum of payoffs strictly larger than vIPE .13 This domi-
nance is also retained when taking limits; under any sequence of action sets in which the
principal’s smallest rationalizable (Nash) payoff is either equal to or approaches vIPE ,
there is a sequence of rationalizable (Nash) payoffs bounded away from vIPE .

Theorem 1 has a number of important implications for the selection of robustly op-
timal contracts under single-valued solution concepts. For instance, under principal-
preferred Nash equilibrium selection (the assumption in the literature discussed in Sec-
tion 1.1), JPE strictly outperforms IPE. In addition, because the maximal rationalizable
(Nash) action profile in any supermodular game with positive spillovers Pareto domi-
nates all other rationalizable (Nash) action profiles, under any selection of rationalizable
action profiles satisfying weak Pareto efficiency for the agents, e.g., selection of a Pareto
undominated Nash equilibrium, JPE strictly outperforms IPE. Put differently, there is
only a “tie" between JPE and IPE if agents coordinate against their own interest. These
observations are collected in the following Corollary.

COROLLARY 1. The following results are immediate from Theorem 1:

12To see that all payoffs in the interval are attainable, it suffices to randomize over the maximal and
minimal action profiles.

13Formally, the set of worst-case rationalizable payoffs dominate {vIPE} in the interval order ⪰I : for
closed intervals X ⊆ R and Y ⊆ R, X ⪰I Y if x ∈X and y ∈ Y implies x≥ y.
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1. (Ambiguity Aversion over Nash Equilibria) Suppose that, given a contract w and ac-
tion set A, the principal has ambiguity aversion over the Nash equilibrium the agents
will play as captured by the λ-Maxmin Expected Utility representation of Ghirardato
et al. (2004):

Vλ(w,A) := λ min
σ∈E(w,A)

Eσ[
n∑

i=1

(yi −wi(y))] + (1− λ) max
σ∈E(w,A)

Eσ[
n∑

i=1

(yi −wi(y))],

where λ ∈ [0,1] and E(w,A) is the set of Nash equilibria in Γ(w,A). Then, under the
JPE contract in Theorem 1, denoted by wJPE ,

inf
A∈A

Vλ(wJPE ,A) ≥ sup
w: w is an IPE

inf
A∈A

Vλ(w,A),

where the inequality is strict for any λ < 1. Notice that λ = 0 corresponds to partial
Nash implementation.

2. (Cooperative Solutions) Let f :W ×A→∆((R+ ×∆(Y ))n) be any selection of a dis-
tribution over rationalizable action profiles, i.e., f(w,A) ∈ R(w,A), that is weakly
Pareto efficient for the agents, i.e., f(w,A) ̸= σ ∈R(w,A) if there exists a distribution
σ′ ∈R(w,A) such that, for all agents i, Eσ[Ui(·;w)]< Eσ′ [Ui(·;w)]. Given a contract
w and action set A, let

Vf (w,A) := Ef(w,A)[

n∑
i=1

(yi −wi(y))].

Then, under the JPE contract in Theorem 1, denoted by wJPE ,

inf
A∈A

Vf (wJPE ,A) > sup
w: w is an IPE

inf
A∈A

Vf (w,A).

A simple example illustrates the key intuition behind the result.

EXAMPLE 1 (JPE versus IPE). There are two agents (n = 2) and output is binary (Y =

{0,1}). There is a single, common known action (A0
1 = A0

2 = {a0}). The known action
results in success, y = 1, with probability p(a0) > 0 and failure, y = 0, with probability
1− p(a0). Its effort cost is c(a0) ∈ (0, p(a0)). The principal is concerned about unknown
action sets of the form A = {a0, a∗} × {a0, a∗}, where a∗ is a “shirking" action available
to both agents. She knows that shirking entails zero effort cost, c(a∗) = 0, and is less
productive than the known action, i.e., the probability of success is p(a∗)< p(a0). More-
over, she assumes that she can select her most-preferred Nash equilibrium in case of
multiplicity.

Consider first the principal’s payoff guarantee from an optimal IPE, which pays each
agent a share of output α ∈ (c(a0),1). A naïve intuition is that principal’s worst-case pay-
off is obtained when p(a∗) = 0; if agents take a shirking action with this success proba-
bility, then the principal obtains an expected payoff of zero. But, this logic ignores in-
centives, as pointed out by Carroll (2015). In particular, each agent has a strict incentive
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to shirk only if she obtains a higher expected utility from doing so. Hence, (a0, a0) is a
Nash equilibrium whenever

p(a∗)α≤ p(a0)α− c(a0) ⇐⇒ p(a∗)≤ p(a0)−
c(a0)

α
,

yielding the principal a payoff per agent of

p(a0)(1− α).

The principal’s worst-case payoff is instead obtained as p∗ approaches p(a0)− c(a0)/α

from above. Along this sequence, (a∗, a∗) is the unique Nash equilibrium and the prin-
cipal’s payoff per agent becomes arbitrarily close to

(p(a0)−
c(a0)

α
)(1− α).

Now, consider a contract of the form described in the statement of Theorem 1, parame-
terized by ϕ := ϕ1 = ϕ2 > 0 and β := β1 = β2 > 0. Specifically, choose ϕ so that it is strictly
smaller than the benchmark IPE share, α, and choose

β =
α− ϕ

p(a0)
.

This contract is calibrated to the optimal IPE in the following sense: If an agent succeeds
at her task, then her expected wage payment remains the same conditional on the other
agent working. That is,

ϕ+ βp(a0) = α.

Hence, (a0, a0) is, again, a Nash equilibrium whenever

p(a∗)≤ p(a0)−
c(a0)

α
.

Moreover, the principal’s worst-case payoff is again obtained as p(a∗) approaches
p(a0) − c(a0)/α from above. (Along this sequence, (a∗, a∗) is the unique Nash equilib-
rium.) However, a simple calculation shows that the principal obtains a strictly higher
payoff per agent in worst-case scenarios:

(p(a0)−
c(a0)

α
)(1− (ϕ+ βp(a∗)))> (p(a0)−

c(a0)

α
)(1− α),

where the inequality follows from ϕ+ βp(a∗)< ϕ+ βp(a0) = α. See Figure 1 for an illus-
tration. ♢

The intuition behind Example 1 is simple. By constructing a mean-preserving
spread of an agent’s wage with respect to the targeted action of the other, worst-case
productivity is held constant. But, under joint performance evaluation, the principal
pays agents less in expectation in worst-case scenarios. Each is punished for the shirk-
ing of the other.
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FIGURE 1. Principal’s expected payoff per agent as a function of p∗ := p(a∗). Parameters:
p(a0) = 1, c(a0) = 1/4, α= 1/2, ϕ= 0, and β = 1/2.

While Example 1 identifies the key rent-extraction advantage of JPE over IPE, both
the focus on partial Nash implementation and the class of games considered is with
loss of generality. A previous version of this paper established that, under partial Nash
implementation, the worst-case symmetric game for the principal is the limit of an n-
sequence of dominance solvable games with n unknown actions. In each game in this
sequence, agents “undercut" each other as dominated strategies are eliminated, taking
progressively less costly and less productive actions. In asymmetric games, the produc-
tivity of a single agent can be driven even lower. When one agent takes a costless and
less-productive action, others are willing to take even less-productive, costless actions.
Both incentive problems arise because the share of individual output each non-shirking
agent receives, on average, is reduced when others shirk. So, “all at once" reductions in
expected output are less damaging than incremental or sequential reductions.

Theorem 1 asserts that there nevertheless exists a JPE contract that outperforms any
IPE contract. To mitigate the free-riding problem and increase the entire set of rational-
izable payoffs, the proof utilizes a more conservative calibration argument than illus-
trated in Example 1. Specifically, it identifies an improved JPE contract in which each
agent’s contract is calibrated to an IPE yielding him a larger share of individual output
than optimal. Despite encouraging greater productivity, these larger IPE contracts are
suboptimal on their own because they leave too much rent to each agent. But, under
the calibrated JPE contract, the principal reduces expected wage payments in worst-case
scenarios. This reduction is shown to be large enough that the calibrated JPE contract
strictly outperforms both the larger IPE contract and the smaller, optimal IPE contract.
Hence, the superiority of JPE over IPE is retained even when agents may be playing more
complicated games than those considered in Example 1 and under alternative equilib-
rium selection criteria.

To conclude this section, observe that the dominating JPE contracts in Theorem 1
resemble the “bonus pool" contracts used by many corporations. In such an incentive
scheme, the size of the pool depends on the overall performance of the company, i.e.,∑n

i yi, and each worker’s share of the pool depends on their individual contribution,

https://econtheory.org
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i.e., yi. The team-based component of wi, βi
n− 1

n∑
j ̸=i

yj

yi,

corresponds to pay from the bonus pool, while the purely individual component,

ϕiyi,

controls worst-case shirking incentives. Notice that yi is removed from agent i’s bonus
pool payment to avoid double-counting payments for individual contributions.

4. OPTIMALITY OF JOINT PERFORMANCE EVALUATION

The second main result is that, in a canonical setting, any optimal contract is of the form
of the dominating contracts in Theorem 1.14 Specifically, it is assumed that there are
two agents possessing the same known action set, two output levels, and the principal
is restricted to use symmetric incentive contracts. Moreover, the principal can select
her preferred Nash equilibrium in case of multiplicity. Let E(w,A) be the set of Nash
equilibria in the game Γ(w,A). Then, from contract w, the principal obtains a payoff of

V (w) := inf
A∈A

max
σ∈E(w,A)

Eσ[

n∑
i=1

(yi −wi(y))].

Before the result is stated, the contract space and notion of optimality are formally
defined. If there are two agents and two output levels, Y := {0,1}, a contract for agent i
is a quadruple of non-negative wages,

wi := (wi
11,w

i
10,w

i
01,w

i
00) ∈R4

+,

where the first index of each wage indicates agent i’s own success (yi = 1) or failure
(yi = 0) and the second indicates the success or failure of the other agent. If, in ad-
dition, contracts are assumed to be symmetric, then superscripts can be dropped and
the set of all contracts is simply the set of all non-negative quadruples. The typology of
performance evaluations thus simplifies considerably.

DEFINITION 2 (Binary Performance Evaluations). A contract w = (w11,w10,w01,w00) ∈
R4
+ is

• an independent performance evaluation (IPE) if (w11,w01) = (w10,w00);

• a relative performance evaluation (RPE) if (w11,w01)< (w10,w00);

• and a joint performance evaluation (JPE) if (w11,w01)> (w10,w00),

14The Bayesian analog of this setting is thoroughly analyzed by Fleckinger (2012) and Fleckinger et al.
(2023), who show that symmetric IPE contracts are optimal for independent and identical agents.
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where > and < indicate strict inequality in at least one component and weak in both.

Notice that a symmetric bonus pool contract of the form described in Theorem 1 sets
w11 = ϕ+ β, w10 = ϕ, and w01 = w00 = 0 for ϕ > 0 and β > 0. A contract w∗ is said to be
s-optimal if it maximizes V (·) over the set of symmetric contracts.

The main result follows below.

THEOREM 2 (Optimality of JPE). Suppose there are two agents, n= 2, with a common set
of known actions, A0 :=A0

1 =A0
2, and the set of output levels is binary, Y = {0,1}. Then,

any s-optimal contract is a JPE contract with w01 =w00 = 0 and there exists an s-optimal
contract.

PROOF. See Appendix A.2.

The result is a consequence of two important Lemmas. The first Lemma establishes
that it is without loss of generality to consider contracts that do not reward failure.15

LEMMA 1 (Suboptimality of Positive Wages for Failure). For any contract w with w00 > 0

or w01 > 0, there either exists an IPE, RPE, or JPE contract w′ with w′
01 = w′

00 = 0 that
yields the principal a higher payoff.

PROOF. See Appendix A.3.

The second Lemma establishes that no RPE contract can outperform the best IPE
contract.

LEMMA 2 (IPE Outperforms RPE). No RPE contract with w01 =w00 = 0 can yield the prin-
cipal a higher payoff than the optimal IPE contract.

PROOF. See Appendix A.4.

From Corollary 1 part 1 with λ= 0 and the proof of Theorem 1, there exists a symmet-
ric JPE contract with w01 = w00 = 0 that strictly outperforms any IPE contract. Hence,
if there exists an s-optimal contract, then there exists an s-optimal JPE contract with
w01 =w00 = 0. Existence and uniqueness follow from simple, technical verifications.

Symmetric RPE contracts, e.g., salesperson-of-the-year awards, are commonly uti-
lized in practice. So, it is worthwhile to describe the economic intuition behind their
suboptimality under robustness considerations. Under RPE, agents are discouraged to
take more productive actions when others are more productive. When one agent is pro-
ductive, the other agent has less of an incentive to take a productive action because his

15Though the result is familiar, the proof is surprisingly nontrivial. Specifically, while reducing payoffs
by a constant rules out many contracts, there are two cases that require different arguments. First, when
w11 > 0 and w00 > 0 (with w01 = w00 = 0), it must be argued that the probability of success under any
equilibrium action decreases in w00. Second, when w10 > 0 and w01 > 0 (with w11 =w00 = 0), symmetric
and mixed equilibria that might be beneficial for the principal must be ruled out.

https://econtheory.org


Submitted to Theoretical Economics Robust Performance Evaluation 13

chance of outperforming the other decreases. Given that one agent is willing to shirk, it
is then possible to provide incentives for the other agent to shirk. In the resulting equilib-
rium, expected wage payments actually increase; weight is shifted from w11 to w10 and
w10 > w11, in contrast to the case of JPE. The corresponding increase in expected wage
payments offsets the advantage of encouraging productivity by one of the two agents.
The mechanics of the argument are illustrated in an elaboration of Example 1.

EXAMPLE 2 (RPE versus IPE). Suppose the environment and space of uncertainty are
the same as in Example 1. Consider the performance guarantee of an RPE contract with
w11 >w10 > 0. Observe that a∗ is a strict best response to a∗ if and only if

p(a∗) (p(a∗)w11 + (1− p(a∗))w10)︸ ︷︷ ︸
Payoff a∗ against a∗

> p(a0) (p(a
∗)w11 + (1− p(a∗))w10)− c(a0)︸ ︷︷ ︸

Payoff a0 against a∗

⇐⇒ p(a∗)> p(a0)−
c(a0)

p(a∗)w11 + (1− p(a∗))w10
.

That is, if one agent shirks, the other has a strict incentive to shirk. If this inequality is
satisfied, then a∗ is also a strict best-response to a0; the incentive to shirk is larger when
the other works because w11 < w10. So, a∗ is a strictly dominant strategy and (a∗, a∗) is
the unique Nash equilibrium.

Now, suppose the productivity of the shirking action approaches from above the
value, p(a∗), at which

p(a∗) = p(a0)−
c(a0)

p(a∗)w11 + (1− p(a∗))w10
.

Then, (a∗, a∗) is the unique Nash equilibrium along the sequence and the principal’s
payoff per agent approaches

(p(a0)−
c(a0)

p(a∗)w11 + (1− p(a∗))w10
) (1− (p(a∗)w11 + (1− p(a∗))w10)) .

This payoff can be no higher than what is obtained from an IPE contract with share
α := p(a∗)w11 + (1− p(a∗))(1−w10), whose payoff is derived in Example 1. ♢

5. FINAL REMARKS

This paper identifies non-statistical foundations for team-based incentive schemes
commonly used in practice. Very generally, it is shown that linking the pay of in-
dependent agents is robustly optimal. Moreover, in a canonical environment, joint
performance evaluation contracts, e.g., bonus pool incentive programs, are optimal.
Such contracts approximate the incentive properties of benchmark independent per-
formance evaluation contracts, while flexibly reducing expected wage payments when
agents are less productive than the principal anticipates. The worst-case analysis draws
attention to these scenarios, uncovering an economic intuition that had previously gone
unnoticed.
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APPENDIX A: PROOFS

A.1 Proof of Theorem 1

From Carroll (2015), there exists an optimal IPE contract such that, for each i,

wi(yi, y−i) = αiyi,

where αi =
√

c(a0i )/
√

EF (a0
i )
[y] for some a0i ∈ A0

i . The infimum payoff from agent i is

attained in the limit of a sequence of action sets (Ai(k))k in which the agent’s unique
rationalizable action has expected output converging to

p̄i := EF (a0
i )
[yi]−

c(a0i )

αi
, (1)

yielding the principal a (worst-case) payoff of

p̄i (1− αi) .

When compensating n agents using only optimal IPE contracts, the principal’s payoff is
thus

vIPE =

n∑
i=1

p̄i (1− αi) .

Fix a collection of optimal IPE shares (αi)i, where αi =
√
c(a0i )/

√
EF (a0

i )
[yi] for some

a0i ∈A0
i . Consider a JPE contract such that, for each agent i,

wi(yi, y−i) = (ϕi +
βi

n− 1

n∑
j ̸=i

yj)yi, (2)

where αi > ϕi > c(a0i )/EF (a0
i )
[yi] and c(a0

i )
(E

F (a0
i
)
[yi])2

> βi > 0 are chosen so that

ϕi +
βi

n− 1

n∑
j ̸=i

p̄j = αi, (3)

with p̄i defined in (1). Notice that, because EF (a0
j )
[yj ]> p̄j for all j ̸= i, the constructed

JPE is calibrated to a contract strictly larger than the optimal IPE for agent i. In addition,
if all agents take an action with expected output equal to p̄i, then the principal’s payoff
under the JPE contract is exactly vIPE , a consequence of the reduction in expected wage
payments under JPE.

Now, equip any Ai ⊇ A0
i with the partial order ⪰: ai ⪰ a′i if either EF (ai)[yi] >

EF (a′
i)
[yi], or EF (ai)[yi] = EF (a′

i)
[yi] and c(ai) ≤ c(a′i). Then, Γ(w,A) is a supermod-

ular game under the corresponding product order on action profiles: a′ ⪰ a implies
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EF (a′
i)
[yi]≥ EF (ai)[yi] for all i and hence

Ui(a
′
i, a

′
−i;w

∗)−Ui(ai, a
′
−i;w

∗) =

ϕi + βi

n∑
j ̸=i

EF (a′
j)
[yj ]

(EF (a′
i)
[yi]−EF (ai)[yi]

)
−
(
c(a′i)− c(ai)

)
≥

ϕi + βi

n∑
j ̸=i

EF (aj)[yj ]

(EF (a′
i)
[yi]−EF (ai)[yi]

)
−
(
c(a′i)− c(ai)

)
= Ui(a

′
i, a−i;w

∗)−Ui(ai, a−i;w
∗).

The following Lemma establishes that, in any game, every agent i plays an action with
expected output weakly larger than p̄i in any rationalizable strategy profile. Moreover,
there exists a game with a rationalizable action profile in which each agent i produces
expected output equal to p̄i.

LEMMA 3. Suppose, for each i, wi satisfies (2)-(3). Then, given any action set A satisfy-
ing Ai ⊇ A0

i , any rationalizable action for agent i in Γ(w,A) has expected output weakly
larger than p̄i. However, there exists an action set A satisfying Ai ⊇ A0

i such that Γ(w,A)
has a rationalizable action profile in which each agent i produces expected output exactly
equal to p̄i.

PROOF. Given the presence of a0i , under any conjecture about other agents’ actions,
agent i is unwilling to play an action with expected output smaller than

p1i := EF (a0
i )
[yi]−

c(a0i )

ϕi
> 0

because min(Y ) = 0. If agent i knows each agent j ̸= i is unwilling to play an action with
expected output smaller than p1j , then he is unwilling to play an action with expected
output smaller than

p2i := EF (a0
i )
[yi]−

c(a0i )

ϕi +
βi

n− 1

n∑
j ̸=i

p1j

> p1i .

Iterating yields a strictly increasing and bounded sequence, (pk1 , ..., p
k
n)k. Hence, its limit,

(p∞1 , ..., p∞2 ) ∈ [0,max(Y )]n, exists by the monotone convergence theorem and must sat-
isfy

p∞i = EF (a0
i )
[yi]−

c(a0i )

ϕi +
βi

n− 1

n∑
j ̸=i

p∞j

for all i= 1, ..., n.
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By (3), p∞i = p̄i for all i is a solution to the system of equations. It is the unique solution
because the map T :Rn

+ →Rn
+ with i-th component

Ti(p) = EF (a0
i )
[yi]−

c(a0i )

ϕi +
βi

n− 1

n∑
j ̸=i

pj

is a contraction on (Rn
+, d), where d(x, y) := maxi |xi − yi| is the supremum (Chebyshev)

distance. To prove this, observe that for any vectors p, p′ ∈Rn
+,

|Ti(p)− Ti(p
′)|= | c(a0i )

ϕi +
βi

n− 1

n∑
j ̸=i

pj

− c(a0i )

ϕi +
βi

n− 1

n∑
j ̸=i

p′j

|

= |

c(a0i )βi(
1

n− 1
(
∑
j ̸=i

pj −
∑
j ̸=i

p′j))

(ϕi +
βi

n− 1

n∑
j ̸=i

pj)(ϕi +
βi

n− 1

n∑
j ̸=i

p′j)

|

≤ |c(a
0
i )βi

ϕ2i
|d(p, p′),

with | c(a
0
i )βi

ϕ2
i

| ≤ |βi

(
(E

F (a0
i
)
[yi])

2

c(a0
i )

)
|< 1 by ϕi > c(a0i )/EF (a0

i )
[yi] and βi <

c(a0
i )

(E
F (a0

i
)
[yi])2

. So

d(T (p), T (p′)) =max
i

|Ti(p)− Ti(p
′)| ≤ κd(p, p′),

where κ := mini |
c(a0

i )βi

ϕ2
i

|< 1.

Now, consider the action set A :=×n
i=1A

0
i ∪{a∗i }, where c(a∗i ) = 0 and EF (a∗

i )
[yi] = p̄i.

In Γ(w,A), (a∗1, . . . , a
∗
n) is rationalizable because a∗i is a best-response to a∗−i (it yields the

same payoff as i’s targeted known action, which is a best-response to a∗−i inA0
i ). So, there

exists an action set with a rationalizable action profile in which each agent i produces
expected output p̄i.

In addition, there exists some ϵ > 0 such that in any game played by the agents there
exists a rationalizable action profile in which there is some agent i with expected output
weakly larger than p̄i + ϵ.

LEMMA 4. There exists an ϵ > 0 such that, in any game Γ(w,A) in which, for each i, wi

satisfies (2)-(3) and Ai ⊇ A0
i , there is at least one rationalizable action profile in which

some agent i plays an action with expected output weakly larger than p̄i + ϵ.
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PROOF. For each i, define

p̂i := EF (a0
i )
[yi]−

(c(a0i )/2)

ϕi +
βi

(n− 1)

n∑
j ̸=i

p̄j

> p̄i,

a lower bound on the expected output of any rationalizable action with cost weakly

greater than c(a0i )/2 by Lemma 3. Let δ ∈ (0, 13 mini(EF (a0
i )
[yi]− p̄i)) satisfy both

1

3
max

i


ϕi +

βi
n− 1

n∑
j ̸=i

(p̄j + 3δ)

ϕi +
βi

n− 1

n∑
j ̸=i

p̄j

<
1

2
(4)

and

δ <
1

3
min
i


c(a0i )

ϕi +
βi

n− 1

n∑
j ̸=i

p̄j

− c(a0i )

ϕi +
βi

n− 1

n∑
j ̸=i

p̂j

 . (5)

Define

ϵ := min
i


c(a0i )

ϕi +
βi

n− 1

n∑
j ̸=i

p̄j

− c(a0i )

ϕi +
βi

n− 1

n∑
j ̸=i

(p̄j + δ)

> 0. (6)

Towards contradiction, suppose that there exists an action set with Ai ⊇A0
i in which

all rationalizable action profiles involve each agent producing expected output strictly

smaller than p̄i+ϵ. It suffices to consider action sets with maximal action profile equal to

the targeted known action profile, (a01, ..., a
0
n). Let (aki )

∞
k=0 be the best-response path for

agent i obtained from infinite iteration of maximal best-response functions. Let a∞i :=

limk→∞ aki . Then, (a∞1 , ..., a∞n ) is a rationalizable action profile (see, e.g., Vives (1990)

and Milgrom and Roberts (1990)). Hence, it must satisfy EF (a∞
i )[yi]< p̄i + ϵ for all i, or

EF (a∞
i )[yi]< EF (a0

i )
[yi]−

c(a0i )

ϕi +
βi

n− 1

n∑
j ̸=i

p̄j

+ ϵ (7)
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for all i using the definition of p̄i. For any k ≥ 1, aki is in agent i’s maximal best-response

path only if

EF (ak
i )
[yi]≥ E

F (ak−1
i )

[yi]−
c(ak−1

i )− c(aki )

ϕi +
βi

n− 1

n∑
j ̸=i

E
F (ak−1

j )
[yj ]

.

So,

EF (a∞
i )[yi]≥ EF (a0

i )
[yi]−

∞∑
k=1

c(ak−1
i )− c(aki )

ϕi +
βi

n− 1

n∑
j ̸=i

E
F (ak−1

j )
[yj ]

.

Hence, from (7),

EF (a0
i )
[yi]−

c(a0i )

ϕi +
βi

n− 1

n∑
j ̸=i

p̄j

+ ϵ > EF (a0
i )
[yi]−

∞∑
k=1

c(ak−1
i )− c(aki )

ϕi +
βi

n− 1

n∑
j ̸=i

E
F (ak−1

j )
[yj ]

,

which holds if and only if

ϵ >
c(a0i )

ϕi +
βi

n− 1

n∑
j ̸=i

p̄j

−
∞∑
k=1

c(ak−1
i )− c(aki )

ϕi +
βi

n− 1

n∑
j ̸=i

E
F (ak−1

j )
[yj ]

.

Re-arranging and using the definition of ϵ > 0 yields

∞∑
k=1

c(ak−1
i )− c(aki )

ϕi +
βi

n− 1

n∑
j ̸=i

E
F (ak−1

j )
[yj ]

>
c(a0i )

ϕi +
βi

n− 1

n∑
j ̸=i

(p̄j + δ)

(8)

for all i. Let ki be the largest iteration at which
∑n

j ̸=iEF (a
ki−1
j )

[yj ]≥
∑n

j ̸=i(p̄j + 3δ). Ob-

serve that ki ≥ 1 because δ < 1
3 mini(EF (a0

i )
[yi]− p̄i) and E

F (ak−1
i )

[yi]≥ EF (ak
i )
[yi]≥ p̄i for

all k ≥ 1. Moreover, ki <∞. If not, then (8) would be violated because c(ak−1
i )≥ c(aki )≥

0 for all k ≥ 1. In addition, c(akii ) ≥ c(a0
i )

2 . If not, then (8) would be violated because

E
F (ak−1

i )
[yi]≥ EF (ak

i )
[yi]≥ p̄i for all k ≥ 1, and the value of x that solves

x

ϕi +
βi

n− 1

n∑
j ̸=i

(p̄j + 3δ)

+
c(a0i )− x

ϕi +
βi

n− 1

n∑
j ̸=i

p̄j

=
c(a0i )

ϕi +
βi

n− 1

n∑
j ̸=i

(p̄j + δ)

⇐⇒
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x=
c(a0i )

3


ϕi +

βi
n− 1

n∑
j ̸=i

(p̄j + 3δ)

ϕi +
βi

n− 1

n∑
j ̸=i

p̄j


is smaller than 1

2c(a
0
i ) by (4). Choose K := mini ki. Then, in iteration K , there must exist

some agent i and action aKi in i’s best-response path satisfying EF (aK
i )[yi]< p̄i + 3δ and

c(aKi )≥ 0 when E
F (aK−1

i )
[yj ]≥ p̂j for all j. That is, it must be thatϕi +

βi
n− 1

n∑
j ̸=i

p̂j

 (p̄i + 3δ)>

ϕi +
βi

n− 1

n∑
j ̸=i

p̂j

EF (a0
i )
[y]− c(a0i ).

But, re-arranging and using the definition of p̄i yields

δ >
1

3


c(a0i )

ϕi +
βi

n− 1

n∑
j ̸=i

p̄j

− c(a0i )

ϕi +
βi

n− 1

n∑
j ̸=i

p̂j

 ,

which contradicts (5).

Suppose, for each i, ϕi is sufficiently close to αi, so that the principal’s payoff is
strictly increasing in the expected output of each agent. Then, from Lemma 3,

inf
A∈A

min(V (w,A)) = vIPE

and, from Lemma 4,

inf
A∈A

max(V (w,A))> vIPE .

A.2 Proof of Theorem 2

Carroll (2015)’s analysis shows that there is a symmetric IPE contract that is opti-
mal within the class of all IPE contracts when A0

1 = A0
2: w10 = w11 = α, where α =√

c(a0)/
√
EF (a0)[y]> 0 for some a0 ∈ A0, and w00 = w01 = 0. From (2)-(3), and the rest

of the proof of Theorem 1, there thus exists a symmetric JPE contract parameterized by
ϕ ∈ (0, α) and β > 0 with w11 = ϕ + β, w10 = ϕ, and w01 = w00 = 0 that strictly outper-
forms the optimal IPE contract.

Lemma 1, proved in Appendix A.3, establishes that it suffices to compare RPE con-
tracts satisfying w00 = w01 = 0 to JPE contracts. Lemma 2, proved in Appendix A.4, es-
tablishes that there is no such RPE contract that outperforms the best symmetric IPE
contract. Hence, from the preceding paragraph, if an s-optimal contract exists, then
there exists one that exhibits JPE.
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Existence of an s-optimal JPE contract with w01 = w00 = 0 follows because the min-
imization problem over action sets is jointly continuous in (w11,w10), success prob-
abilities, and cost parameters, and the constraint set is compact when (tight) strict
best-response inequalities are made weak (recall, under JPE, it suffices to inspect best-
response dynamics leading to a maximal equilibrium in the order defined in Section
A.1). By the Maximum Theorem, the principal’s payoff is thus continuous in (w11,w10).
Because (w11,w10) can be taken to lie in a compact set (both wages are bounded be-
low by zero and w11 ≥ w10 cannot exceed 1 for the principal to make positive profits),
existence of an s-optimal contract is then guaranteed by the Weierstrass Theorem.

The proof of Lemma 1 shows that any contract that is not a JPE contract and does
not set w11 > 0, w00 > 0, and w10 = w01 = 0 is weakly improved upon by an IPE or RPE
contract. In addition, it establishes that any contract setting w11 > 0 and w00 > 0 (with
w10 = w01 = 0) is strictly outperformed by a nonaffine JPE contract with w00 = 0. The
uniqueness result follows.

A.3 Proof of Lemma 1

If w11 ≥w01 (w10 ≥w00), setting w′
11 =w11−w01 and w′

01 = 0 (w′
10 =w10−w00 and w′

00 =

0) shifts each agent’s payoff by a constant. Similarly, if w11 ≤ w01 (w10 ≤ w00), setting
w′
01 =w01−w11 and w′

11 = 0 (w′
00 =w00−w10 and w′

10 = 0) shifts each agent’s payoff by a
constant. It follows that any Nash equilibrium under w is also a Nash equilibrium under
w′. Since the principal’s ex post payment decreases, these adjustments must (weakly)
increase her payoff.

The argument in the previous paragraph immediately establishes that if w11 ≥ w01

and w10 ≥w00, then there exists an improved contract w′ in which w′
00 =w′

01 = 0. There
are three other cases to consider: (i) w01 ≥ w11 and w00 ≥ w10 (in which case it suffices
to set w11 = w10 = 0); (ii) w11 ≥ w01 and w00 >w10 (in which case it suffices to set w01 =

w10 = 0); and (iii) w01 >w11 and w10 ≥w00 (in which case it suffices to set w11 =w00 = 0).
If w01 ≥ 0 and w00 ≥ 0, then w cannot yield the principal a positive payoff (and,

hence, does not outperform the best IPE). To wit, let Ai := A0 ∪ {a∅} where p(a∅) = 0 =

c(a∅). Then, a∅ is a strictly dominant strategy and so (a∅, a∅) is the unique Nash equilib-
rium. In this equilibrium, the principal obtains a payoff −2w00 ≤ 0.

If w11 ≥ w01 = 0 and w00 > w10 = 0, then it must be that w11 > 0 or the principal
could not attain a positive payoff by the argument in the preceding paragraph. Un-
der such a contract, agent i’s payoffs satisfy increasing differences in (ai, aj) when Ai

is equipped with partial order ⪰: ai ⪰ a′i if either EF (ai)[yi] > EF (a′
i)
[yi], or EF (ai)[yi] =

EF (a′
i)
[yi] and c(ai) ≤ c(a′i). Hence, any game this contract induces is supermodular.

Moreover, fixing aj , (ai,w00) satisfies decreasing differences and (ai,w11) satisfies in-
creasing differences. Theorem 6 of Milgrom and Roberts (1990) then implies that the
maximal and minimal equilibria of any game Γ(w,A), Ai ⊇ A0, are decreasing in w00

and increasing in w11. Moreover, each agent’s expected utility is increasing in expected
output if the other has expected output larger than w00

w11+w00
. Notice that the principal’s

profit is increasing in expected output if and only if expected output by each agent is
larger than p̃ = 1/2+w00

w11+w00
. So, if the principal’s worst-case payoff is obtained in a region
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in which both agents succeed with probability strictly smaller than p̃, then reducing w00

by a small amount strictly increases the principal’s payoff. On the other hand, if the

principal’s worst-case payoff is obtained in a region in which both agents succeed with

probability strictly larger than p̃, then reducing w11 by a small amount constitutes a strict

improvement. The knife-edge cases in which either both succeed with probability p̃ or

one succeeds with probability less than p̃ and the other larger cannot occur in worst-case

scenarios. In the former case, one can always add to each agent’s action set a zero-cost

action that succeeds with probability one and make the principal strictly worse off. In

the latter case, one can construct a symmetric action set that makes the principal strictly

worse off.

If w01 >w11 = 0 and w10 ≥w00 = 0, agent i’s payoff satisfies decreasing differences. It

is shown that the principal’s payoff under such a contract cannot exceed the principal’s

payoff under the best IPE contract, vIPE . Let a∅ be the action satisfying c(a∅) = p(a∅) =

0. Let a∗ϵ be an action for which c(a∗ϵ ) = 0 and for which p(a∗ϵ ) is a fixed point of

Tϵ(p) :=

 max
a∈A0∪{a∅}

[
p(a)− c(a)

w10−p(w10+w01)

]
+ ϵ if w10 − p(w10 +w01)> 0

0 otherwise
,

where ϵ > 0 is small. To see that Tϵ has a fixed point, notice that, for any p ∈ [0,1], Tϵ(p) is

larger than zero (because a∅ ∈A0 ∪{a∅}) and less than one if ϵ is small enough (because

A0 does not contain a zero-cost action that results in success with probability one by

the assumption of costly known productive actions). Hence, Tϵ is a continuous function

mapping [0,1] into [0,1].

By construction, (a∗ϵ , a
∗
ϵ ) is a Nash equilibrium of Γ(w,Aϵ), where Aϵ is an action set

satisfying Ai =A0 ∪ {a∗ϵ , a∅}. Now, consider a sequence of strictly positive values ϵ1, ϵ2,

. . . that converges to zero and for which there is a convergent sequence of fixed points

p(a∗ϵ1), p(a
∗
ϵ2), . . . of the mappings Tϵ1 , Tϵ2 , . . . . (Because [0,1] is a compact set, such a

convergent sequence must exist.) Moreover, if the limit p∗ satisfies w10−p∗(w10+w01)>

0, then it must equal

p∗ := max
a∈A0∪{a∅}

[
p(a)− c(a)

w10 − p∗(w10 +w01)

]
.

It is shown that the principal’s worst-case payoff in the limit can be no larger than

what she obtains from the optimal IPE contract. If p∗ equals zero, then the principal

attains less than zero profits and so lower profits than under the optimal IPE contract.

Otherwise, let â0 denote a maximizer of p(a)− c(a)
w10−p∗(w10+w01)

over A0 ∪ {a∅}, let α̂ :=
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(1− p∗)w10, and notice that the principal attains a payoff of

2
[
(p∗)2 + p∗(1− p∗)(1−w01 −w10)

]
= 2

[
p(â0)−

c(â0)

(1− p∗)(w10 +w01)

]
[1− (1− p∗)(w10 +w01)]

≤ 2

[
p(â0)−

c(â0)

(1− p∗)w10

]
[1− (1− p∗)w10]

= 2

[
p(â0)−

c(â0)

α̂

]
[1− α̂] .

But,

2

[
p(â0)−

c(â0)

α̂

]
(1− α̂)≤ 2 max

α∈[0,1],a0∈A0∪{a∅}

[
(1− α)(p(a0)−

c(a0)

α
)

]
= 2 max

α∈[0,1],a0∈A0

[
(1− α)(p(a0)−

c(a0)

α
)

]
= vIPE ,

where the inequality follows because p(â0) − c(â0)
α̂ ≥ 0 for all α̂ ≥ 0, and the equality

follows because setting α= 1 yields the principal a payoff of zero given any action in A0,
the payoff attained from choosing a∅ and any α ∈ [0,1].

The previous argument establishes that if there exists a K such that, for all k ≥ K ,
(a∗ϵk , a

∗
ϵk
) is the unique Nash equilibrium of Γ(w,Aϵk), then the principal’s worst-case

payoff is no higher than vIPE . But, other pure and mixed strategy equilibria may exist
that benefit the principal, even as k grows large. First, consider the case in which the
limit of (a∗ϵk) is a∅. If multiplicity arises, then there exists an action a0 ∈ A0 that results
in success with strictly positive probability and is a weak best response to any action
that succeeds with zero probability; if not, then there would exist a K such that for all
k ≥ K , (a∗ϵk , a

∗
ϵk
) is the maximal Nash equilibrium of Γ(w,Aϵk) and hence the unique

Nash equilibrium. If p(a0) ≤ w10
w10+w01

, then the principal’s payoff in any equilibrium in
which such an action is played with positive probability is less than zero. This follows
from

p(a0)(1−w10 −w01)≤
w10

w10 +w01
−w10 < 0.

If, on the other hand, p(a0) >
w10

w10+w01
, then add to each Aϵk the action a′0 for which

c(a′0) = 0 and p(a′0) = p(a0)− c(a0)
w10

if p(a0)− c(a0)
w10

> w10
w10+w01

and p(a′0) =
w10

w10+w01
+ ϵk

otherwise. In the first case, the principal attains a payoff of[
p(a0)−

c(a0)

w10

]
(1−w10 −w01)≤ 2 max

α∈[0,1],a0∈A0

[
(1− α)(p(a0)−

c(a0)

α
)

]
= vIPE .

In the second case, there exists a K such that for all k ≥K , the principal’s payoff in the
equilibrium (a′0, a

∗
ϵk
) is less than zero because the inequality in the previous displayed
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equation is strict. Finally, no mixed equilibria can exist in any of the cases considered be-
cause a∅ is a strict best response to any action larger than w10

w10+w01
(the marginal benefit

of succeeding with higher probability is less than zero).
Second, consider the case in which the limit of (a∗ϵk) is p∗ > 0. Any other pure or

mixed Nash equilibrium of Γ(w,Aϵk) must involve one agent succeeding with probabil-
ity p̂ ≥ w10

w10+w01
> p∗. If not, then p(a∗ϵk) would be a best-response to the distribution p̂

and, if p(a∗ϵk) is played, then any distribution p̂ could not be a best-response.16 How-
ever, any equilibrium in which one agent generates a distribution p̂ must have the other
play either a∅ (if p̂ > w10

w10+w01
), a∗ϵk (only if p̂ = w10

w10+w01
), or a mixture between the two

(again, only if p̂= w10
w10+w01

); known productive actions are costly and the marginal ben-
efit of succeeding with higher probability is less than zero (strictly so if p̂ > w10

w10+w01
). It

suffices to consider the case in which p̂ > w10
w10+w01

. In the other two cases, introducing
an action that has the same productivity as the most productive action in the support
of the player’s strategy that succeeds with probability p̂, but an (arbitrarily) smaller cost,
reduces the problem to this case, or alternatively, results in the equilibrium (a∗ϵk , a

∗
ϵk
).

So, consider any action, a0 ∈ A0, satisfying p(a0) ≥ w10
w10+w01

in the support of the strat-
egy succeeding with probability p̂ > w10

w10+w01
. Mirroring the argument in the previous

case, add to each Aϵk the action a′0 for which c(a′0) = 0 and p(a′0) = p(a0)− c(a0)
w10

+ ϵk if

p(a0)− c(a0)
w10

> w10
w10+w01

and p(a′0) =
w10

w10+w01
+ ϵk otherwise. These adjustments ensure

that a′0 is the unique best response to a∅ for every k and so, mirroring the steps in the
proof of the previous case, the principal attains a payoff no larger than vIPE .

A.4 Proof of Lemma 2

The proof will utlize the following result from the theory of supermodular games. Let
amax and amin denote the maximal and minimal elements of A, and BR : A → A and
BR : A → A denote the maximal and minimal best-response functions for the agents.
Define the mapping

B̃R :A×A→A×A

(ai, aj) 7→ (BR(aj),BR(ai)).

Then, the following Lemma holds.

LEMMA 5 (Vives (1990), Milgrom and Roberts (1990)). Suppose (ā, a) is the limit found by
iterating B̃R starting from the action profile (amax, amin). If Γ(w,A) is submodular, then
both (ā, a) and (a, ā) are Nash equilibria and any other Nash equilibrium action must be
smaller than ā and larger than a.

16The first statement follows because p(a∗ϵ ) has zero cost, profits would still be increasing in the prob-
ability with which the agent succeeds, and there are strictly decreasing differences. The second follows
because p(a∗ϵk ) is a strict best-response to p(a∗ϵk ) by construction.
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Now, let a∅ be the action satisfying c(a∅) = p(a∅) = 0. Let a∗ϵ be an action for which
c(a∗ϵ ) = 0 and for which p(a∗ϵ ) is a fixed point of

Tϵ(p) := max
a0∈A0∪{a∅}

[
p(a0)−

c(a0)

pw11 + (1− p)w10

]
+ ϵ,

where ϵ > 0 is small.17 To see that Tϵ has a fixed point, notice that, for any p ∈ [0,1],
Tϵ(p) is larger than zero (because a∅ ∈ A0 ∪ {a∅}) and less than one if ϵ is small enough
(because A0 does not contain a zero-cost action that results in success with probability
one). Hence, Tϵ is a continuous function mapping [0,1] into [0,1].

Now, define an action space Aϵ that satisfies Ai = A0 ∪ {a∗ϵ , a∅}. If A0 contains an
action producing yi = 1 with probability one, consider the least costly among all of
them, ā0, and add to Aϵ the action āϵ, where c(āϵ) = c(ā0) − γ(ϵ) and p(ān) = 1 − γ(ϵ)

2

for γ(ϵ) := ϵ(p(a∗
ϵ )w11+(1−p(a∗

ϵ ))w10
2 . Then, āϵ strictly dominates ā0 (and so any other ac-

tion producing yi = 1 with probability one is as well) and a∗ϵ is a strictly better reply to a∗ϵ
than āϵ.

It is shown that (a∗ϵ , a
∗
ϵ ) is the unique Nash equilibrium of Γ(w,Aϵ). Notice, by con-

struction, (a∗ϵ , a
∗
ϵ ) is a strict Nash equilibrium. Now, remove all actions producing yi = 1

with probability one since they are strictly dominated by āϵ. Upon removing these ac-
tions, a∗ϵ strictly dominates any action smaller than it in the order ⪰. So, remove any ac-
tions in Γ(w,Aϵ) below a∗ϵ and denote the resulting action space by Â. Now, consider the
profile (ā, a∗ϵ ), where ā is the largest element of Â. Since a∗ϵ is the unique best response
to a∗ϵ (because (a∗ϵ , a

∗
ϵ ) is a strict Nash equilibrium), the maximal best-response to a∗ϵ is

a∗ϵ . This also implies that a∗ϵ is the minimal best-response to ā; if not, there exists some
â0 ∈ Â such that â0 ≻ a∗ϵ and Ui(â0, a0;w)− Ui(a

∗
ϵ , a0;w)≥ Ui(â0, ā;w)− Ui(a

∗
ϵ , ā;w)> 0

for any a0 ∈ Â, where the first inequality follows from the property of decreasing differ-
ences and the second from a0 being the smallest best-response to ā. Hence, â0 strictly
dominates a∗ϵ , contradicting the previous observation that a∗ϵ is a best response to a∗ϵ . As
(a∗ϵ , a

∗
ϵ ) is a fixed point of B̃R, (a∗ϵ , a

∗
ϵ ) is the limit found by iterating B̃R from (ā, a∗ϵ ) or

(a∗ϵ , ā) in Γ(w, Â). By Lemma 5, it follows that (a∗ϵ , a
∗
ϵ ) is the unique Nash equilibrium of

Γ(w, Â) and hence of Γ(w,Aϵ).
Now, consider a sequence of strictly positive values ϵ1, ϵ2,... that converges to zero

and for which there is a convergent sequence of fixed points p(a∗ϵ1), p(a
∗
ϵ2),... of the map-

pings Tϵ1 , Tϵ2 ,... . Since [0,1] is a compact set, such a convergent sequence must exist.
Moreover, its limit is the distribution

p(a∗) = max
a0∈A0∪{a∅}

[
p(a0)−

c(a0)

p(a∗)w11 + (1− p(a∗))w10

]
.

Let â0 ∈ A0 ∪ {a∅} denote the maximizer on the right-hand side and define α̂ :=

p(a∗)w11 + (1 − p(a∗))w10. The principal’s payoff in the unique equilibrium (a∗ϵk , a
∗
ϵk
)

of Γ(w,Aϵk) as k grows large becomes arbitrarily close to

2 [p(a∗)] [p(a∗)(1−w11) + (1− p(a∗))(1−w10)] =

17Interpret − c(a0)
pw11+(1−p)w10

as zero if the denominator is zero and c(a0) = 0 and −∞ if the denominator

is zero and c(a0)> 0.
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2

[
p(â0)−

c(â0)

α̂

]
(1− α̂)≤ 2 max

α∈[0,1],a0∈A0∪{a∅}

[
(1− α)(p(a0)−

c(a0)

α
)

]
,

where the inequality follows because p(â0)− c(â0)
α̂ ≥ 0 for all α̂ ≥ 0 and so it suffices to

consider values of α between zero and one to maximize (1 − α)(p(a0) − c(a0)
α ) for any

a0 ∈A0 ∪ {a∅}. But,

2 max
α∈[0,1],a0∈A0∪{a∅}

[
(1− α)(p(a0)−

c(a0)

α
)

]
=2 max

α∈[0,1],a0∈A0

[
(1− α)(p(a0)−

c(a0)

α
)

]
=vIPE ,

where vIPE is the principal’s payoff under the best IPE, because setting α= 1 yields the
principal a payoff of zero given any action in A0, the same payoff attained from choosing
a∅ and any α ∈ [0,1].
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