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Abstract

A principal contracts with an agent, who takes a hidden action. The princi-

pal does not know all of the actions the agent can take and evaluates her pay-

off from any contract according to its worst-case performance. Carroll (2015)

showed that there exists a linear contract that is optimal within the class of

deterministic contracts. This paper shows that, whenever there is an optimal

linear contract with non-zero slope, the principal can strictly increase her payoff

by randomizing over deterministic, linear contracts. Hence, if the principal be-

lieves that randomization can alleviate her ambiguity aversion, then restricting

attention to the study of deterministic contracts is with loss of generality.

1 Introduction

A principal writes an incentive contract for an agent. The agent takes a productive,

but hidden, action. Unfortunately for the principal, she does not know all available

actions. Which contract yields her the highest worst-case payoff?
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In path-breaking work, Carroll (2015) sets forth a new paradigm to answer this

question. He proves, very generally, that the optimal deterministic contract is linear—

the agent receives a constant fraction of the output she produces. This simple con-

tract contrasts with the more complicated, detail-sensitive contracts predicted by the

standard, Bayesian principal-agent model.

At the same level of generality as Carroll (2015), this paper shows that the prin-

cipal can strictly increase her worst-case payoff by randomizing over deterministic

contracts, as long as there is an optimal (deterministic) linear contract with non-zero

slope (Theorem 1). Hence, if the principal believes that randomization can allevi-

ate her ambiguity aversion, then restricting attention to the study of deterministic

contracts is with loss of generality.

Section 2 presents the model, Section 3 states and proves the main result, Section

4 considers two extensions, and Section 5 discusses a decision-theoretic justification

for restricting attention to the study of deterministic contracts.

2 Model

In what follows, any Euclidean space is equipped with the Euclidean topology and

any product of topological spaces is equipped with the product topology. The set

of Borel distributions on any topological space X is denoted by ∆(X ) and is always

equipped with the topology of weak convergence.

2.1 Environment

There is a single principal and a single agent. The agent takes a costly, hidden action

to produce stochastic, but observable, output. All parties are risk-neutral.

Let Y ⊂ R denote the set of possible output levels. It is assumed to be compact

with min(Y ) = 0. To produce output, the agent chooses an action, a, which consists

of a probability distribution, F (a) ∈ ∆(Y ), and a cost of effort, c(a) ∈ R+. It is

assumed that the set of actions available to the agent A ⊂ ∆(Y )× R+ is compact.

The principal can commit to a deterministic contract — a continuous function

w : Y → R+ — or a randomization over deterministic contracts. Non-negativity of

wages reflects agent limited liability. Given a (deterministic) contract w, if the agent

takes an action a and produces output y, then the agent’s ex-post payoff is w(y)−c(a)
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and the principal’s ex-post payoff is y − w(y).

The (non-empty) set of optimal actions for the agent under the action set A given

a contract w is

A(w,A) := argmax
a∈A

EF (a)[w(y)]− c(a).

It is assumed that if the agent is indifferent among several actions, she chooses the

principal’s most preferred action. Hence, the principal’s expected payoff given w and

A is

V (w,A) := max
a∈A(w,A)

EF (a)[y − w(y)].

2.2 Max-Min Problems

The principal knows only a compact subset of available actions to the agent A0 ⊂
∆(Y )×R+ when she writes a contract. She thus chooses one with the highest possible

payoff guarantee across all compact supersets of her knowledge A ⊇ A0. As in Carroll

(2015), it is assumed that the following nontriviality assumption holds: There exists

a known action generating strictly positive surplus, i.e., an action a0 ∈ A0 for which

EF (a0)[y]− c(a0) > 0.

Let the set of all deterministic contracts be denoted by W (equip it with the sup-

norm topology). Let S denote the set of all compact supersets of A0 ⊂ ∆(Y ) × R+

(equip it with the topology induced by the Hausdorff metric). Carroll (2015) solved

the principal’s deterministic max-min optimization problem:

V ∗
D := sup

w∈W
inf
A∈S

V (w,A). (1)

In particular, he showed that there exists a linear contract

w∗(y) := α∗y for some α∗ ∈ [0, 1)

that obtains1

V ∗
D = max

α∈[0,1],a0∈A0

(1− α)

(
EF (a0)[y]−

c(a0)

α

)
= (1− α∗) max

a0∈A0

(
EF (a0)[y]−

c(a0)

α∗

)
> 0.

(2)

1If α = 0 and c(a0) = 0, then interpret c(a0)/α as 0. If α = 0 and c(a0) > 0, then interpret
c(a0)/α as +∞.
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The principal’s worst-case expected payoff under w∗ is attained by a sequence of action

sets (A0 ∪ {an})n for which c(an) = 0 for all n and for which EF (an)[y] approaches

maxa0∈A0

(
EF (a0)[y]−

c(a0)
α∗

)
from above, so that the agent has a strict incentive to

take an along the sequence.2 Hence, V ∗
D equals the share of output received by the

principal under an optimal linear contract w∗ with slope α∗ multiplied by a tight

lower bound on the expected productivity of the agent’s action under this contract.

It will be assumed throughout that there is at least one optimal linear contract with

non-zero slope, α∗ > 0. A simple sufficient condition on the primitives of the model

that ensures that this is the case is for any known action generating strictly positive

surplus to have non-zero cost.

Under the assumption that there is an optimal (deterministic) linear contract with

non-zero slope, this paper considers the more general problem in which the principal

can commit to a randomization over deterministic contracts:

V ∗
R := sup

w̃∈∆(W)

inf
A∈S

V (w̃, A), (3)

where V (w̃, A) := Ew̃[V (w,A)]. I note that, by standard arguments, it is without loss

of generality to restrict Nature to choose a pure strategy, A ∈ S, instead of allowing

her to choose a mixed strategy, Ã ∈ ∆(S). That is, permitting Nature to randomize

has no effect on the value of V ∗
D or V ∗

R.

3 Analysis

The main result of the paper follows below.

Theorem 1

Randomization strictly increases the principal’s worst-case expected payoff:

V ∗
R > V ∗

D.

The proof is constructive; I exhibit a random contract that yields the principal

a strictly higher worst-case payoff than any deterministic contract. (Appendix A.4

illustrates the difficulties that arise when trying to prove the result using a minimax

2There may not be a single “worst-case” action set for Nature due to the assumption that, when
the agent is indifferent among multiple actions, the principal can select her most-preferred action.
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theorem.) For this purpose, fix a linear contract w∗(y) = α∗y with α∗ > 0 that is op-

timal within the class of deterministic contracts. Then, define another deterministic,

linear contract that yields the agent a smaller share of output:

w∗
ϵ (y) := (α∗ − ϵ) y,

where α∗ > ϵ > 0. I show that, for ϵ sufficiently small, a contract that uniformly

randomizes over the optimal deterministic contract and this alternative contract, i.e.,

w̃ϵ :=
1

2
◦ w∗ +

1

2
◦ w∗

ϵ ∈ ∆(W),

yields the principal a strictly higher worst-case expected payoff than w∗. Specifically,

it is shown that w̃ϵ strictly reduces expected wage payments while keeping worst-case

expected output constant relative to the optimal deterministic contract w∗.3

I first define a lower bound on the principal’s worst-case expected payoff from w̃ϵ.

Lemma 1

The principal’s worst-case expected payoff from the random contract w̃ϵ is bounded

below by the value of a (relaxed) screening problem:

inf
A∈S

V (w̃ϵ, A) ≥ V (w̃ϵ),

where

V (w̃ϵ) := inf
a∗,a∗ϵ∈∆(Y )×R+

1

2
(1− α∗)EF (a∗) [y] +

1

2
(1− (α∗ − ϵ))EF (a∗ϵ ) [y]

subject to

[ICw∗ ] α∗EF (a∗)[y]− c(a∗) ≥ max
a0∈A0

α∗EF (a0)[y]− c(a0)

[ICw∗
ϵ→w∗ ] (α∗ − ϵ)EF (a∗ϵ )[y]− c(a∗ϵ) ≥ (α∗ − ϵ)EF (a∗)[y]− c(a∗).

(4)

Proof. See Appendix A.1.

The value of (4) provides a lower bound on the principal’s payoff under the random

contract w̃ϵ. ICw∗ ensures that, relative to any known action, the agent prefers to

take action a∗ when the contract realization is w∗. ICw∗
ϵ→w∗ ensures that the agent

3A related intuition is explored in a team-production setting in Kambhampati (2022).
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prefers to take action a∗ϵ instead of a∗ when the contract realization is w∗
ϵ .

I next establish properties that hold in any solution to (4).

Lemma 2

If ϵ > 0 is sufficiently small, then a solution to (4) exists and in any solution the

following properties hold:

1. ICw∗
ϵ→w∗ and ICw∗ bind.

2. c(a∗) = c(a∗ϵ) = 0 and EF (a∗)[y] = EF (a∗ϵ )[y].

Proof. See Appendix A.2.

Lemma 2 establishes that, when ϵ > 0 is sufficiently small, in any solution to

(4), both incentive constraints bind and there is pooling: c(a∗) = c(a∗ϵ) = 0 and

EF (a∗)[y] = EF (a∗ϵ )[y]. That is, an agent receiving contract w∗ takes an action with

payoff-identical properties as when she receives w∗
ϵ . Hence, by the binding constraint

ICw∗ ,

EF (a∗)[y] = EF (a∗ϵ )[y] = max
a0∈A0

(
EF (a0)[y]−

c(a0)

α∗

)
> 0, (5)

where the strict inequality is from (2). So,

V (w̃ϵ) =
1

2

[
(1− α∗)EF (a∗)[y]

]
+

1

2

[
(1− (α∗ − ϵ))EF (a∗)[y]

]
> (1− α∗)EF (a∗)[y]

= (1− α∗) max
a0∈A0

(
EF (a0)[y]−

c(a0)

α∗

)
= V ∗

D,

where the inequality follows because the principal, sometimes, pays the agent a share

of output α∗ − ϵ instead of α∗, the proceeding equality follows from (5), and the final

equality follows from (2). Putting everything together, I have shown that, if ϵ is

sufficiently small, then

V ∗
R ≥ inf

A∈S
V (w̃ϵ, A) ≥ V (w̃ϵ) > V ∗

D,

where the first inequality is by definition, the second is proven in Lemma 1, and the

third is a corollary of Lemma 2. Theorem 1 has thus been proven.
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I briefly summarize the economic intuition behind the proof. As discussed in

Section 2, if an optimal deterministic contract w∗ is offered, then the principal’s

worst-case expected payoff is attained by a sequence of action sets converging to

A∗ := A0 ∪ {a∗}, where c(a∗) = 0 and

EF (a∗)[y] = max
a0∈A0

(
EF (a0)[y]−

c(a0)

α∗

)
.

Similarly, if the deterministic contract w∗
ϵ is offered, then the principal’s worst-case

expected payoff is attained by a sequence of action sets converging to A∗
ϵ := A0∪{a∗ϵ},

where c(a∗ϵ) = 0 and4

EF (a∗ϵ )[y] = max
a0∈A0

(
EF (a0)[y]−

c(a0)

α∗ − ϵ

)
< max

a0∈A0

(
EF (a0)[y]−

c(a0)

α∗

)
= EF (a∗)[y].

Under w∗, the agent takes an action arbitrarily close to a∗ and, under w∗
ϵ , the agent

takes an action arbitrarily close to a∗ϵ . So, it is natural to guess that the principal’s

worst-case expected payoff in response to the random contract w̃ϵ =
1
2
◦w∗+ 1

2
◦w∗

ϵ is

attained by a sequence of action sets converging to A′ := A0∪{a∗, a∗ϵ}, with the agent

taking actions arbitrarily close to a∗ under w∗ and actions arbitrarily close to a∗ϵ under

w∗
ϵ along the sequence.5 However, if actions close to both a∗ and a∗ϵ are available,

then the agent is unwilling to choose one close to a∗ϵ when w∗
ϵ is realized; a∗ is strictly

more productive than a∗ϵ and entails the same effort cost. Lemma 2 establishes that,

when ϵ > 0 is sufficiently small, Nature can do no better than choose an action set

arbitrarily close to A∗ (or A′, for that matter) against w̃ϵ, with the agent choosing

an action arbitrarily close to a∗ both when w∗ and w∗
ϵ are realized. Put differently,

the agent’s worst-case expected productivity following any contract realization in the

support of w̃ϵ is identical to her worst-case expected productivity when offered the

optimal deterministic contract w∗. However, whenever w∗
ϵ is realized under w̃ϵ, the

principal pays the agent strictly less in expectation. Hence, her worst-case expected

payoff strictly increases.

4To see that the inequality must be strict, recall that, by (2), in order for α∗ > 0 to have been

an optimal deterministic contract it must have been be that maxa0∈A0

(
EF (a0)[y]−

c(a0)
α∗

)
obtains

a maximum value at an action a0 ∈ A0 with c(a0) > 0 .
5If the agent were willing to take such actions, then w̃ϵ could not strictly increase the princi-

pal’s worst-case expected payoff above V ∗
D because her payoff would be no higher than a convex

combination of her payoffs under two deterministic contracts.
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4 Extensions

I now discuss how the analysis changes under two extensions of the model. First, with

some extra steps, it can be shown that Theorem 1 holds under more general utility

functions for the agent, e.g., those reflecting risk aversion. Specifically, suppose that

the agent has any increasing, bijective utility function over wages, uA : R → R with

uA(0) = 0, and that the agent’s overall utility is additively separable in utility from

wages and disutility of effort. In addition, suppose that there exists a known action

a0 ∈ A0 satisfying

EF (a0)[uA(y)]− c(a0) > 0.

Under these conditions, a working paper version6 of Carroll (2015) showed that there

exists an optimal deterministic contract w∗ for which there exist constants α∗ ≥ 0

and β∗ ≥ 0 such that7

uA(w
∗(y)) = α∗(y − w∗(y)) + β∗.

In Appendix A.3, I show that if there is an optimal deterministic contract with α∗ > 0,

so that w∗(y) is strictly increasing, then the principal strictly benefits from random-

ization. The proof mirrors that of Theorem 1, but, instead, considers the payoff

guarantee of a contract that uniformly randomizes over w∗ and another contract, w∗
ϵ ,

satisfying8

uA(w
∗
ϵ (y)) = (α∗ − ϵ) (y − w∗

ϵ (y)) + β∗.

It is shown that this randomization yields the principal a strictly higher payoff than

w∗ if ϵ > 0 is sufficiently small. Hence, the result that randomization strictly benefits

the principal does not rely crucially on the agent’s risk-neutrality or on the linearity

of the optimal deterministic contract in output.

Second, returning to the model with a risk-neutral agent, the limited liability

constraint is indispensable. If the limited liability constraint is, instead, replaced

with the requirement that the agent receives non-negative expected utility, then the

6See http://www.bu.edu/econ/files/2013/03/May-4-Caroll.pdf, dated December 21, 2012.
7The intercept β∗ must be nonnegative because, if not, then the limited liability constraint on

w∗ would be violated when y = 0. Notice also that though w∗ is affine in the principal’s utility, it
need not be affine in output.

8The working paper version of Carroll (2015) contains a detailed proof that, for every ϵ > 0,
there exists a unique continuous function w∗

ϵ satisfying this equation.
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principal can extract full surplus from the agent under A0 with a deterministic con-

tract w(y) = y − s0, where s0 := maxa0∈A0 EF (a0)[y]− c(a0). Because it is impossible

to obtain a higher worst-case expected payoff than the total surplus under A0, the

principal can do no better by randomizing.

5 Conclusion

In the spirit of Raiffa (1961)’s critique and in the tradition of the theory of zero-sum

games, I have explored the possibility that randomization might be used to increase

the principal’s worst-case payoff in the robust principal-agent problem of Carroll

(2015). I proved that the principal does, in fact, achieve a strictly higher worst-case

payoff by randomizing.

How should the optimal deterministic contract be interpreted? Building upon

Ellsberg (1961), Saito (2015) argues that it might be reasonable for a decision maker

to believe that randomization will not resolve her ambiguity aversion (see also Ke

and Zhang (2020)). In particular, the principal might believe that Nature moves

only after a deterministic contract is realized. Hence, under such beliefs, the optimal

deterministic contract cannot be improved upon. The validity of restricting attention

to the study of deterministic contracts thus depends crucially upon the principal’s

beliefs about the timing of the resolution of uncertainty.

A Proofs

A.1 Proof of Lemma 1

Fix w̃ϵ and take any strategy of Nature A ∈ S. If w∗ is realized, then the agent

chooses an action a∗ ∈ A(w∗, A), which necessarily satisfies

α∗EF (a∗)[y]− c(a∗) ≥ max
a∈A

α∗EF (a)[y]− c(a).

Similarly, if w∗
ϵ is realized, then the agent chooses an action a∗ϵ ∈ A(w∗

ϵ , A), which

necessarily satisfies

(α∗ − ϵ)EF (a∗ϵ )[y]− c(a∗ϵ) ≥ max
a∈A

(α∗ − ϵ)EF (a)[y]− c(a).
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Because w∗ and w∗
ϵ are realized with equal probability, if these two actions are taken,

then the principal obtains an expected payoff of

1

2
EF (a∗) [y] +

1

2
(1− (α∗ − ϵ))EF (a∗ϵ ) [y] .

It follows that

inf
A∈S

V (w̃ϵ, A) ≥ V̂ (w̃ϵ),

where

V̂ (w̃ϵ) := inf
A∈S

1

2
(1− α∗)EF (a∗) [y] +

1

2
(1− (α∗ − ϵ))EF (a∗ϵ ) [y]

subject to

[ICw∗ ] α∗EF (a∗)[y]− c(a∗) ≥ max
a∈A

α∗EF (a)[y]− c(a)

[ICw∗
ϵ
] (α∗ − ϵ)EF (a∗ϵ )[y]− c(a∗ϵ) ≥ max

a∈A
(α∗ − ϵ)EF (a)[y]− c(a).

I next claim that V̂ (w̃ϵ) ≥ V (w̃ϵ), where V (w̃ϵ) is defined in the statement of the

Lemma. First, observe that any A ∈ S containing more than two “unknown” actions

for the agent can be replaced with A0 ∪ {a∗, a∗ϵ} ⊂ A, where a∗ is the agent’s action

under w∗ and a∗ϵ is their action under w∗
ϵ . The resulting program,

inf
a∗,a∗ϵ∈∆(Y )×R+

1

2
(1− α∗)EF (a∗) [y] +

1

2
(1− (α∗ − ϵ))EF (a∗ϵ ) [y]

subject to

[ICw∗ ] α∗EF (a∗)[y]− c(a∗) ≥ max
a0∈A0

α∗EF (a0)[y]− c(a0)

[ICw∗
ϵ
] (α∗ − ϵ)EF (a∗ϵ )[y]− c(a∗ϵ) ≥ max

a∈A0

(α∗ − ϵ)EF (a0)[y]− c(a0)

[ICw∗→w∗
ϵ
] α∗EF (a∗)[y]− c(a∗) ≥ α∗EF (a∗ϵ )[y]− c(a∗ϵ)

[ICw∗
ϵ→w∗ ] (α∗ − ϵ)EF (a∗ϵ )[y]− c(a∗ϵ) ≥ (α∗ − ϵ)EF (a∗)[y]− c(a∗),

has fewer inequality constraints. Therefore, it results in a (weakly) smaller payoff for

the principal. Similarly, removing the constraints ICw∗
ϵ
and ICw∗→w∗

ϵ
results in an

even smaller payoff for the principal. It follows that

inf
A∈S

V (w̃ϵ, A) ≥ V̂ (w̃ϵ) ≥ V (w̃ϵ),
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where

V (w̃ϵ) := inf
a∗,a∗ϵ∈∆(Y )×R+

1

2
(1− α∗)EF (a∗) [y] +

1

2
(1− (α∗ − ϵ))EF (a∗ϵ ) [y]

subject to

[ICw∗ ] α∗EF (a∗)[y]− c(a∗) ≥ max
a0∈A0

α∗EF (a0)[y]− c(a0)

[ICw∗
ϵ→w∗ ] (α∗ − ϵ)EF (a∗ϵ )[y]− c(a∗ϵ) ≥ (α∗ − ϵ)EF (a∗)[y]− c(a∗).

I next prove that the infimum is attained in the optimization problem defining

V (w̃ϵ) by showing that it is equivalent to a problem of minimizing a continuous

function over a compact set. First, observe that the objective function is continuous

in the choice variables; expectations are taken over continuous functions and ∆(Y )

is equipped with the topology of weak convergence. Second, observe that c(a∗) ≤
max(Y ) and c(a∗ϵ) ≤ max(Y ) for any feasible action pair (a∗, a∗ϵ). To see why, recall

that, by (2), α∗ < 1 and maxa0∈A0 α
∗EF (a0)[y] − c(a0) > 0. So, if c(a∗) > max(Y ),

then ICw∗ implies EF (a∗)[y] > max(Y ), which is not satisfied for any distribution

F (a∗) ∈ ∆(Y ). Similarly, observe that ICw∗ and ICw∗→w∗ together imply

(α∗ − ϵ)EF (a∗ϵ )[y]− c(a∗ϵ) > −ϵEF (a∗)[y] ⇐⇒ EF (a∗ϵ )[y] >
c(a∗ϵ)− ϵEF (a∗)[y]

α∗ − ϵ
.

If c(a∗ϵ) > max(Y ) and EF (a∗)[y] ≤ max(Y ), then it would have to be the case that

EF (a∗ϵ )[y] > max(Y ), which is not satisfied for any distribution F (a∗ϵ) ∈ ∆(Y ). So, (4)

is equivalent to a problem in which the feasible region for (a∗, a∗ϵ) is the intersection

of (∆(Y ) × [0,max(Y )])2, a compact set, and the set of action pairs satisfying ICw∗

and ICw∗
ϵ→w∗ . Because ICw∗ and ICw∗

ϵ→w∗ are defined by weak inequalities, this

intersection is a closed subset of a compact set and is therefore compact.

A.2 Proof of Lemma 2

I first prove that if ϵ ∈ (0, α∗) is sufficiently small, then it must be that c(a∗ϵ) = 0 in

any solution to (4). Observe that in any solution it must be that

α∗EF (a∗)[y]− c(a∗) > 0.
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This follows from ICw∗ and maxa0∈A0 α
∗EF (a0)[y]−c(a0) > 0, which is implied by (2).

Therefore, there exists a value ϵ1 ∈ (0, α∗) such that, for all ϵ < ϵ1,

(α∗ − ϵ)EF (a∗)[y]− c(a∗) > 0.

Now, let ϵ < ϵ1 and, towards contradiction, suppose that c(a∗ϵ) > 0. By ICw∗
ϵ→w∗ , it

must be that EF (a∗ϵ )[y] > 0. So, a∗ϵ can be replaced with an alternative action â that

has cost c(â) = 0 and a mixture distribution F (â) which places probability δ > 0 on

the Dirac measure with unit mass on y = 0 and probability (1− δ) on F (a∗ϵ), where δ

is chosen so that the agent’s utility is unchanged. Then, EF (â)[y] < EF (a∗ϵ )[y] and all

incentive constraints are satisfied. Since the objective function is strictly increasing

in the agent’s productivity, it follows that the principal’s payoff could not have been

minimized with c(a∗ϵ) > 0, the desired contradiction.

Imposing the necessary condition for optimality that c(a∗ϵ) = 0, the following

problem remains:

min
EF (a∗)[y],EF (a∗ϵ )[y]∈[0,max(Y )],c(a∗)≥0

1

2
(1− α∗)EF (a∗) [y] +

1

2
(1− (α∗ − ϵ))EF (a∗ϵ ) [y]

subject to

[ICw∗ ] EF (a∗)[y] ≥ U0 +
c(a∗)

α∗

[ICw∗
ϵ→w∗ ] EF (a∗ϵ )[y] ≥ EF (a∗)[y]−

c(a∗)

(α∗ − ϵ)
,

(6)

where

U0 := max
a0∈A0

(
EF (a0)[y]−

c(a0)

α∗

)
> 0

and Nature’s choices of F (a∗) and F (a∗ϵ) have been replaced with their expected

values, EF (a∗)[y] and EF (a∗ϵ )[y].
9

Now, consider the relaxed problem in which the constraints EF (a∗)[y], EF (a∗ϵ )[y] ∈
[0,max(Y )] are omitted. In any solution to this problem, ICw∗ must bind. If ICw∗

does not bind, then Nature can reduce EF (a∗)[y] by a small amount while satisfy-

ing all incentive constraints and strictly reduce the objective function. In addition,

9Replacement with expectations is without loss of generality because only these properties of the
distributions affect the objective function and constraints. In addition, any expected value between
0 and max(Y ) can be obtained through an appropriately defined mixture distribution.
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ICw∗
ϵ→w∗ must bind. If not, then Nature can reduce EF (a∗ϵ )[y] by a small amount

and strictly reduce the objective function. Eliminating EF (a∗)[y] and EF (a∗ϵ )[y] from

Nature’s problem using the binding constraints yields

min
c(a∗)≥0

1

2
(1− α∗)

(
U0 +

c(a∗)

α∗

)
+

1

2
(1− (α∗ − ϵ))

(
U0 +

c(a∗)

α∗ − c(a∗)

(α∗ − ϵ)

)
.

The objective function is strictly increasing in c(a∗) if and only if

(1− α∗)(α∗ − ϵ)

(1− α∗ + ϵ)
> ϵ.

Since the left-hand side converges to α∗ > 0 as ϵ converges to zero and the right-

hand side converges to zero as ϵ converges to zero, there exists an ϵ2 > 0 such

that if ϵ < min{ϵ1, ϵ2}, then the inequality is satisfied. Hence, for ϵ < min{ϵ1, ϵ2},
it is optimal to make c(a∗) as small as possible, i.e., any solution to the relaxed

problem has c(a∗) = 0. When this is the case, ICw∗ and ICw∗
ϵ→w∗ binding yields

EF (a∗ϵ ) = U0 = EF (a∗ϵ )[y] ∈ [0,max(Y )]. So, any solution to the relaxed problem is

feasible in the original problem and the solution sets of the two problems coincide.

In summary, if ϵ > 0 is sufficiently small, then c(a∗) = c(a∗ϵ) = 0 in any solution to

Nature’s (relaxed) screening problem. In addition, ICw∗ and ICw∗
ϵ→w∗ binding yields

EF (a∗)[y] = U0 = EF (a∗ϵ )[y]. Hence, both properties stated in the Lemma have been

proven.

A.3 General Agent Utility Function

Suppose that the agent has any increasing, bijective utility function over wages, uA :

R → R with uA(0) = 0, and that the agent’s overall utility is additively separable in

utility from wages and disutility of effort. It is assumed that there exists a known

action a0 ∈ A0 satisfying

EF (a0)[uA(y)]− c(a0) > 0. (7)

This ensures that V ∗
D > 0. In addition, it is assumed that there is an optimal deter-

ministic contract, w∗(y), satisfying

uA(w
∗(y)) = α∗(y − w∗(y)) + β∗,
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where α∗ > 0 and β∗ ≥ 0. A simple sufficient condition on the primitives of the

model that ensures that this is the case is for any known action a0 ∈ A0 satisfying (7)

to have c(a0) > 0. From Lemma 3.1 in the working paper version of Carroll (2015),

w∗(y) yields the principal a worst-case payoff of

V ∗
D :=

1

α∗U0 −
β∗

α∗ > 0, (8)

where

U0 := max
a0∈A0

EF (a0)[uA(w
∗(y))]− c(a0) > 0.

For each 0 < ϵ < α∗, define w∗
ϵ to be the unique contract satisfying

uA(w
∗
ϵ (y)) = (α∗ − ϵ)(y − w∗

ϵ (y)) + β∗.

Now, consider the random contract

w̃ϵ :=
1

2
◦ w∗(y) +

1

2
◦ w∗

ϵ (y).

I show that, for ϵ > 0 sufficiently small, w̃ϵ yields the principal a strictly higher

worst-case expected payoff than w∗.

The following version of Lemma 1 holds in this model.

Lemma 3

The worst-case expected payoff from the random contract w̃ϵ is bounded below by the

value of a (relaxed) screening problem:

inf
A∈S

V (w̃ϵ, A) ≥ V (w̃ϵ)−
(
1

2

β∗

α∗ +
1

2

β∗

(α∗ − ϵ)

)
,

where

V (w̃ϵ) := min
a∗,a∗ϵ∈∆(Y )×R+

1

2α∗EF (a∗) [uA(w
∗(y))] +

1

2(α∗ − ϵ)
EF (a∗ϵ ) [uA(w

∗
ϵ (y))]

subject to

[ICw∗ ] EF (a∗)[uA(w
∗(y))]− c(a∗) ≥ U0

[ICw∗
ϵ→w∗ ] EF (a∗ϵ )[uA(w

∗
ϵ (y))]− c(a∗ϵ) ≥ EF (a∗)[uA(w

∗
ϵ (y))]− c(a∗).

(9)

The proof of Lemma 3 is almost identical to that of Lemma 1 and is therefore
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omitted. It will be useful to make a few simplifications before proving an analog of

Lemma 2. First, if ϵ > 0 is sufficiently small, then it must be that c(a∗ϵ) = 0 by an

argument that mirrors the proof of Lemma 2. The following problem remains:

V (w̃ϵ) := min
F (a∗)∈∆(Y ),F (a∗ϵ )∈∆(Y ),c(a∗)≥0

1

2α∗EF (a∗) [uA(w
∗(y))] +

1

2(α∗ − ϵ)
EF (a∗ϵ ) [uA(w

∗
ϵ (y))]

subject to

[ICw∗ ] EF (a∗)[uA(w
∗(y))]− c(a∗) ≥ U0

[ICw∗
ϵ→w∗ ] EF (a∗ϵ )[uA(w

∗
ϵ (y))] ≥ EF (a∗)[uA(w

∗
ϵ (y))]− c(a∗).

(10)

Second, I construct a new optimization problem that strictly relaxes ICw∗
ϵ→w∗ . For

this purpose, observe that for any action a∗ satisfying ICw∗ , which necessarily satisfies

EF (a∗)[y] > 0 by U0 > 0, it must be that

EF (a∗)[uA(w
∗(y))− uA(w

∗
ϵ (y))] = ϵEF (a∗)[y]− α∗EF (a∗)[w

∗(y)] + (α∗ − ϵ)EF (a∗)[w
∗
ϵ (y)]

< ϵEF (a∗)[y]− α∗EF (a∗)[w
∗(y)] + (α∗ − ϵ)EF (a∗)[w

∗(y)]

= ϵEF (a∗)[y − w∗(y)]

=
ϵ

α∗

[
EF (a∗)[uA(w

∗(y))]− β∗] ,
where the inequality follows because w∗

ϵ (y) < w∗(y) for all y > 0. Hence,

EF (a∗)[uA(w
∗
ϵ (y))] >

(
1− ϵ

α∗

)
EF (a∗)[uA(w

∗(y))] +
ϵ

α∗β
∗ (11)

for any action a∗ satisfying ICw∗ . Now, define the problem

V ∗(w̃ϵ) :=

min
F (a∗)∈∆(Y ),F (a∗ϵ )∈∆(Y ),c(a∗)≥0

1

2α∗EF (a∗) [uA(w
∗(y))] +

1

2(α∗ − ϵ)
EF (a∗ϵ ) [uA(w

∗
ϵ (y))]

subject to

[ICw∗ ] EF (a∗)[uA(w
∗(y))]− c(a∗) ≥ U0

[ICw∗
ϵ→w∗ ] EF (a∗ϵ )[uA(w

∗
ϵ (y))] ≥

(
1− ϵ

α∗

)
EF (a∗)[uA(w

∗(y))] +
ϵ

α∗β
∗ − c(a∗).

(12)

The following lemma shows that the value of (12) is strictly smaller than the value

of (10).
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Lemma 4

V ∗(w̃ϵ) < V (w̃ϵ).

Proof. Observe that any solution to (10), (F (a∗), F (a∗ϵ), c(a
∗)), is feasible in (12) by

(11). Moreover, ICw∗
ϵ→w∗ does not bind in (12) at (F (a∗), F (a∗ϵ), c(a

∗)) by (11). So,

F (a∗ϵ) can be replaced with a mixture distribution F̂ that places probability δ > 0

on the Dirac measure with unit mass on y = 0 and probability (1 − δ) on F (a∗ϵ).

If δ > 0 is sufficiently small, then ICw∗
ϵ→w∗ must be satisfied at (F (a∗), F̂ , c(a∗)).

In addition, ICw∗ remains satisfied because neither F (a∗) nor c(a∗) have changed.

Finally, because EF̂ [uA(w
∗
ϵ (y))] < EF (a∗ϵ ) [uA(w

∗
ϵ (y))], it follows that (F (a∗), F̂ , c(a∗))

results in a strictly smaller objective function value than (F (a∗), F (a∗ϵ), c(a
∗)). Hence,

any solution to (12) must result in a strictly smaller objective function value than

any solution to (10).

To bound V ∗(w̃ϵ) from below, I inspect a relaxation of (12):

min
EF (a∗)[uA(w∗(y))],EF (a∗ϵ )[uA(w∗

ϵ (y))],c(a
∗)≥0

1

2α∗EF (a∗) [uA(w
∗(y))] +

1

2(α∗ − ϵ)
EF (a∗ϵ ) [uA(w

∗
ϵ (y))]

subject to

[ICw∗ ] EF (a∗)[uA(w
∗(y))]− c(a∗) ≥ U0

[ICw∗
ϵ→w∗ ] EF (a∗ϵ )[uA(w

∗
ϵ (y))] ≥ (1− ϵ

α∗ )EF (a∗)[uA(w
∗(y))] +

ϵ

α∗β
∗ − c(a∗)

[N1] EF (a∗)[uA(w
∗(y))] ∈ [0, uA(w

∗(max(Y )))]

[N2] EF (a∗ϵ )[uA(w
∗
ϵ (y))] ∈ [0,max{U0 +

ϵ

α∗β
∗, uA(w

∗
ϵ (max(Y )))}].

(13)

I prove an analog of Lemma 2 for this problem.

Lemma 5

If ϵ > 0 is sufficiently small, then the following properties hold in any solution to

(13):

1. ICw∗
ϵ→w∗ and ICw∗ bind.

2. c(a∗) = 0, EF (a∗)[uA(w
∗(y))] = U0, and EF (a∗ϵ )[uA(w

∗
ϵ (y))] = (1− ϵ

α∗ )U0 +
ϵ
α∗β

∗.

Proof. Consider (13) without N1 and N2. ICw∗ and ICw∗
ϵ→w∗ must bind in this

problem at any minimizer because the objective function is strictly increasing in both
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EF (a∗)[uA(w
∗(y))] and EF (a∗ϵ )[uA(w

∗
ϵ (y))] and because decreasing EF (a∗) [uA(w

∗(y))]

relaxes ICw∗
ϵ→w∗ . Using the binding constraints to eliminate EF (a∗)[uA(w

∗(y))] and

EF (a∗ϵ )[uA(w
∗
ϵ (y))] from Nature’s problem yields

min
c(a∗)≥0

1

2α∗ c(a
∗)− 1

2(α∗ − ϵ)

ϵ

α∗ c(a
∗),

where constants in the objective function have been removed. This expression is

strictly increasing in c(a∗) whenever 1 > ϵ
α∗−ϵ

, which holds if ϵ > 0 is sufficiently

small. So, in these cases, it is optimal to set c(a∗) = 0. The binding constraint

ICw∗ yields EF (a∗)[uA(w
∗(y))] = U0 ∈ [0, uA(w

∗(max(Y )))]. The binding constraint

ICw∗
ϵ→w∗ yields EF (a∗ϵ )[uA(w

∗
ϵ (y))] = (1 − ϵ

α∗ )U0 +
ϵ
α∗β

∗ ∈ [0, U0 +
ϵ
α∗β

∗]. So, N1 and

N2 are satisfied.

Now, observe that, for ϵ > 0 sufficiently small,

V ∗(w̃ϵ) ≥
1

2α∗U0 +
1

2(α∗ − ϵ)

(
(1− ϵ

α∗ )U0 +
ϵ

α∗β
∗
)
,

where the right-hand side is the value of (13) and the inequality follows because (13)

is a relaxation of (12). So,

V ∗(w̃ϵ)−
(
1

2

β∗

α∗ +
1

2

β∗

(α∗ − ϵ)

)
≥ U0

α∗ − β∗

α∗ = V ∗
D,

where the equality follows from (8). Hence,

inf
A∈S

V (w̃ϵ, A) ≥ V (w̃ϵ)−
(
1

2

β∗

α∗ +
1

2

β∗

(α∗ − ϵ)

)
> V ∗(w̃ϵ)−

(
1

2

β∗

α∗ +
1

2

β∗

(α∗ − ϵ)

)
≥ V ∗

D,

where the first inequality is from Lemma 3, the second inequality is from Lemma 4,

and the third inequality was just established as a corollary of Lemma 5.

A.4 Unsuccessful, Minimax Proof Approaches

Carroll (2015) observed that there is no saddle point in problem (1), i.e.,

V ∗
D = sup

w∈W
inf
A∈S

V (w,A) < inf
A∈S

sup
w∈W

V (w,A) := V D. (14)
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He then remarked that this “suggests that [the principal] should be able to improve

her worst-case guarantee by randomizing over contracts”, an intuition coming from

von Neumann’s minimax theorem (von Neumann (1928)) and the existence of mixed-

strategy saddle points in finite zero-sum games (von Neumann and Morgenstern

(1944)). In particular, suppose that the following minimax equality holds:

V ∗
R = sup

w̃∈∆(W)

inf
A∈S

V (w̃, A) = inf
A∈S

sup
w̃∈∆(W)

V (w̃, A) := V R, (15)

where the principal’s strategy space is extended from W to ∆(W). Then, the obser-

vation that V R ≥ V D yields V ∗
R > V ∗

D by (14).

Unfortunately, it is not clear how to establish (15) using a minimax theorem.

First, though S is compact under the topological assumptions made in Section 2.2,

it is not apparent that S can be made convex in a manner that makes V (w̃, ·) quasi-
concave or quasi-convex. Such a condition is necessary to apply Sion (1958)’s minimax

theorem. Second, it is not clear that V (w̃, ·) is convexlike, a necessary condition to

use Fan (1953)’s minimax theorem. Finally, V (w̃, ·) is not continuous under principal
most-preferred action selection and V (·, Ã) is not continuous if, instead, principal

least-preferred action selection is assumed.

A natural approach to obviate all issues described and to make Nature’s strategy

space “well-behaved” is to extend it from S to ∆(S). Then, the minimax equality

becomes

V ∗
R = sup

w̃∈∆(W)

inf
Ã∈∆(S)

V (w̃, Ã) = inf
Ã∈∆(S)

sup
w̃∈∆(W)

V (w̃, Ã) := V RR, (16)

where V (w̃, Ã) := Ew̃,Ã[V (w,A)]. However, (16) is insufficient to establish V ∗
R > V ∗

D

because it need not be the case that V RR ≥ V D.
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