Randomization and the Robustness of Linear Contracts

Ashwin Kambhampati (USNA) Juuso Toikka (UPenn) Rakesh Vohra (UPenn) November 25, 2023

Motivation

• The standard principal-agent model thinks like a (Bayesian) statistician.

 \Rightarrow (often) complicated contracts tailored to specifics of environment.

- Long history of pursuing foundations for something "simpler".
- Carroll (AER, 2015): in a non-Bayesian model, linear contracts are robustly optimal because they align the principal and agent's interests.

Motivation

- Analysis restricted to study of optimal deterministic contracts.
- Natural to consider randomization in max-min problems.
 - In zero-sum games, randomization can strictly increase minimax payoff.
 - Raiffa (QJE, 1961): randomization can be used to alleviate ambiguity aversion.
- Kambhampati (JET, 2023): randomization strictly benefits the principal.
- What do robustly contracts look like? Are they still linear? Or "simple"?
- This paper: Optimal to randomize uniformly over just two linear contracts!

A Robust Principal-Agent Problem

- Principal contracts with agent to produce output in compact set $Y \subset \mathbb{R}_+$.
 - $\min(Y) = 0 < \overline{e} = \max(Y).$
- Principal knows agent can take hidden action $(F_0, c_0) \in \Delta(Y) \times \mathbb{R}_+$.
 - $F_0 \in \Delta(Y)$ is probability distribution over output, with mean e_0 .
 - $c_0 \in \mathbb{R}_+$ is effort cost.
 - Assume $e_0 c_0 > 0$ and $c_0 > 0$.
- True set of hidden actions is a compact set $A \subset \Delta(Y) \times \mathbb{R}_+$ containing a_0 .
- Both parties risk-neutral.

A Robust Principal-Agent Problem

- A (deterministic) **contract** is a cts function $w : Y \to \mathbb{R}$.
 - Bilateral limited liability: $0 \le w(y) \le y$ for all $y \in Y$.
 - Participation constraint: $E_{F_0}[w(y)] c_0 \ge \bar{u} \ge 0$ (talk only).
- Set of contracts W, endowed with sup-norm topology.
- A random contract is a (Borel) probability measure over contracts, $p \in \Delta(W)$.
- Timing:
 - 1. Principal commits to a contract p.
 - 2. Nature, knowing p, chooses A.
 - 3. Agent, knowing w and A, chooses $a = (F, c) \in A$.
 - 4. Output y realized.
 - Payoff P: y w(y)
 - Payoff A: w(y) c.

Principal's Payoff Guarantee

• Given (*w*, *A*), set of optimal actions for agent:

$$B(w, A) := \underset{(F,c) \in A}{\operatorname{arg\,max}} \mathbb{E}_{F}[w(y)] - c.$$

• Payoff for principal under (*w*, *A*):

$$V(w, A) := \min_{(F,c)\in B(w,A)} \mathbb{E}_F[y - w(y)].$$

• Payoff guarantee for principal under random contract *p*:

$$V(p) := \inf_{A \ni a_0} \mathbb{E}_p \left[V(w, A) \right].$$

• A random contract is **optimal** if $V(p^*) = \sup_{p \in \Delta(W)} V(p)$.

The Result

- A contract $w \in W$ is *linear* if there exists $\alpha \in [0, 1]$ such that $w(y) = \alpha y$.
- A random contract $p \in \Delta(W)$ is *linear* if every contract in its support is linear.

Theorem

There exists an optimal random contract, p, that is linear and has binary support, $\{\alpha_1, \alpha_2\}$. In any such contract, $p(\{\alpha_1\}) = p(\{\alpha_2\}) = \frac{1}{2}$ and $\alpha_1 < \alpha_D < \alpha_2$.

Three steps for today:

- 1. Any random contract can be improved upon by a linear random contract.
- 2. There exists an optimal random linear contract.
- 3. Enough to randomize over two linear contracts .

- Let $q \in \Delta(W)$ be a random contract.
- Let $T: W \to W$ be a cts linear transformation associating each contract w with a linear contract with slope

$$\alpha_w := \frac{\mathbb{E}_{F_0}[w(y)]}{e_0}.$$

• Define a linear random contract

$$p(B) := q(T^{-1}(B)) \quad \forall \text{ Borel } B \subset W.$$

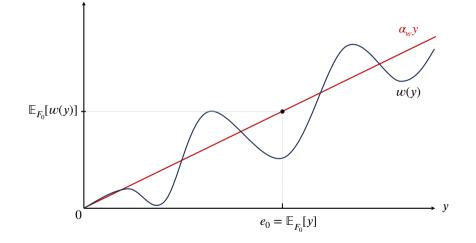
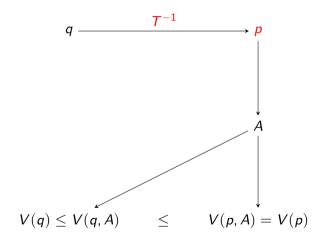


Figure 1: Illustration of the linear transformation $T(\cdot)$.

Claim: $V(p) \ge V(q)$.



Associate with any *linear* random contract $p \in \Delta(W)$, the cdf $G_p : [0, 1] \rightarrow [0, 1]$.

$$V(p) = \min_{(e(\alpha),c(\alpha))_{\alpha \in [0,1]}} \int_0^1 (1-\alpha) e(\alpha) \, dG_p(\alpha) \tag{LP}(p)$$

subject to

$$\begin{aligned} &\alpha e(\alpha) - c(\alpha) \ge \alpha e(\alpha') - c(\alpha') & \forall \alpha, \alpha' \in [0, 1] : \alpha \neq \alpha', \\ &\alpha e(\alpha) - c(\alpha) \ge \alpha e_0 - c_0 & \forall \alpha \in [0, 1], \end{aligned} \tag{IC}$$

$$c(\alpha) \ge 0, \ 0 \le e(\alpha) \le ar{e}$$
 $\forall \alpha \in [0, 1].$ (F)

Analogy to "standard" mechanism design:

- G_p is the distribution over types $\alpha \in [0, 1]$.
- $e(\cdot)$ is the allocation rule.
- $c(\cdot)$ is the transfer rule.

$$V(p) = \min_{e(\cdot)} \int_0^1 (1 - \alpha) e(\alpha) \, dG_p(\alpha) \tag{LP}(p)$$

subject to
$$e(\cdot) \text{ is nondecreasing,}$$

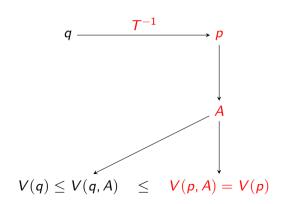
$$\int_0^\alpha e(t) dt \ge \alpha e_0 - c_0 \qquad \forall \alpha \in [0, 1],$$

$$e(0) \ge 0, \ e(1) \le \bar{e}.$$

Lemma

There exists a minimizer $e^*(\cdot)$ bounded above by e_0 .

Solution identifies a family of worst-case technologies of the form $cl(\{(F_0, c_0)\} \cup \{(F(\alpha), c^*(\alpha))_{\alpha \in [0,1]}\})$ with $E_{F(\alpha)}[y] = e^*(\alpha) \le e_0$.



Choose a selection from this family that makes q perform poorly:

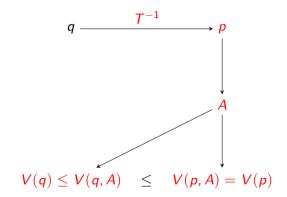
$$A := \mathsf{cl}\left(\{(F_0, c_0)\} \cup \{(F(\alpha), c^*(\alpha))_{\alpha \in [0,1]}\}\right),$$

where

$$F(\alpha) := \left(\frac{e^*(\alpha)}{e_0}\right) F_0 + \left(1 - \frac{e^*(\alpha)}{e_0}\right) \delta_0.$$

Notice:

$$\underbrace{\mathbb{E}_{F(\alpha)}[w(y)] = \left(\frac{e^*(\alpha)}{e_0}\right) \mathbb{E}_{F_0}[w(y)] = \alpha_w e^*(\alpha)}_{\Rightarrow \text{ IC satisfied}} \text{ and } \underbrace{\mathbb{E}_{F(\alpha)}[y] = \left(\frac{e^*(\alpha)}{e_0}\right) e_0 = e^*(\alpha)}_{\Rightarrow V(q,A) \le V(p,A)}.$$



Proof Sketch

- A contract $w \in W$ is *linear* if there exists $\alpha \in [0, 1]$ such that $w(y) = \alpha y$.
- A random contract $p \in \Delta(W)$ is *linear* if every contract in its support is linear.

Theorem

There exists an optimal random contract, p, that is linear and has binary support, $\{\alpha_1, \alpha_2\}$. In any such contract, $p(\{\alpha_1\}) = p(\{\alpha_2\}) = \frac{1}{2}$ and $\alpha_1 < \alpha_D < \alpha_2$.

Three steps:

- 1. Any random contract can be improved upon by a linear random contract. \checkmark
- 2. There exists an optimal random linear contract.
- 3. Enough to randomize over two linear contracts.

• Suffices to check whether there is a contract that maximizes

$$\begin{split} \begin{split} \begin{split} \mathcal{I}(p) &= \min_{e(\cdot)} \int_0^1 (1-\alpha) e(\alpha) \, dG_p(\alpha) \qquad \qquad (\mathsf{LP}(p)) \\ &\text{subject to} \\ &e(\cdot) \text{ is nondecreasing,} \\ &\int_0^\alpha e(t) dt \geq \alpha e_0 - c_0 \qquad \forall \alpha \in [0,1], \\ &e(0) \geq 0, \ e(1) \leq \bar{e}. \end{split}$$

 If V(·) is continuous (in the topology of weak convergence), then existence follows from compactness of Δ([0, 1]).

Lemma

 $p\mapsto V(p)$ is a continuous map from $\Delta([0,1])$ to \mathbb{R} .

Proof Sketch:

- Let $V_k(p)$ be P's payoff when Nature's choice $e(\cdot)$ is k-Lipschitz continuous.
- Feasible set compact in sup-norm topology (Arzelà-Ascoli).
- Objective function becomes continuous in $(e(\cdot), p)$.
- So $V_k(\cdot)$ is continuous by Maximum Theorem.
- Sequence (V_k) converges uniformly to V, establishing its continuity.

Proof Sketch

- A contract $w \in W$ is *linear* if there exists $\alpha \in [0, 1]$ such that $w(y) = \alpha y$.
- A random contract $p \in \Delta(W)$ is *linear* if every contract in its support is linear.

Theorem

There exists an optimal random contract, p, that is linear and has binary support, $\{\alpha_1, \alpha_2\}$. In any such contract, $p(\{\alpha_1\}) = p(\{\alpha_2\}) = \frac{1}{2}$ and $\alpha_1 < \alpha_D < \alpha_2$.

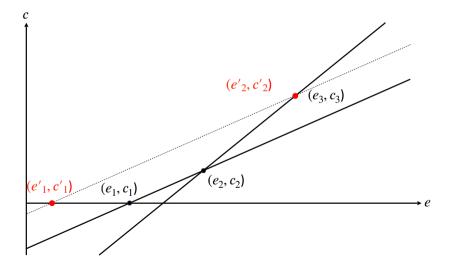
Three steps:

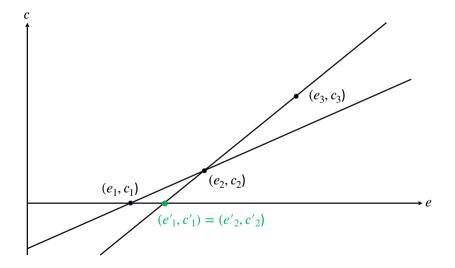
- 1. Any random contract can be improved upon by a linear random contract. \checkmark
- 2. There exists an optimal linear contract. \checkmark
- 3. Enough to randomize over two linear contracts.

- Because V(·) is continuous and finite random contracts are dense in Δ([0, 1]), suffices to establish improvement argument for linear random contracts with finite support.
- Will utilize (another) important lemma:

Lemma

Let p be a linear random contract with $supp(p) = \{\alpha_1, ..., \alpha_I\}$ and probabilities $(p_i)_i$. Then, LP(p) has a solution $(e_i, c_i)_{i=1}^I$ such that $\#\{e_i : i \in [1, I]\} \le 2$.





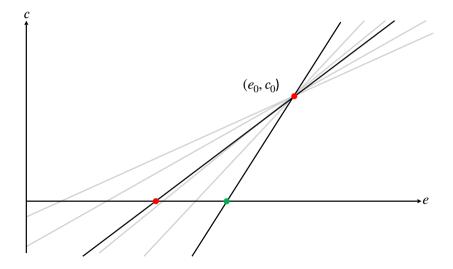
• *P*'s payoff:

$$V(p) = \min_{k \in [1,l]} \sum_{i=1}^{k} p_i (1-\alpha_i) \left(e_0 - \frac{c_0}{\alpha_k} \right) + \sum_{i=k+1}^{l} p_i (1-\alpha_i) e_0.$$

• If probabilities chosen optimally, then at most one type takes the known action $(k \ge l-1)$. So:

$$V(p) = \min\{\underbrace{\sum_{i=1}^{I} p_i(1-\alpha_i) \left(e_0 - \frac{c_0}{\alpha_I}\right)}_{\text{Pooling}}, \underbrace{\sum_{i=1}^{I-1} p_i(1-\alpha_i) \left(e_0 - \frac{c_0}{\alpha_{I-1}}\right)}_{\text{Pooling}} + p_I(1-\alpha_I)e_0\}$$

• Collapse pooling region into a single contract played with prob 1 or $\sum_{i=1}^{I-1} p_i$.



Proof Sketch

- A contract $w \in W$ is *linear* if there exists $\alpha \in [0, 1]$ such that $w(y) = \alpha y$.
- A random contract $p \in \Delta(W)$ is *linear* if every contract in its support is linear.

Theorem

There exists an optimal random contract, p, that is linear and has binary support, $\{\alpha_1, \alpha_2\}$. In any such contract, $p(\{\alpha_1\}) = p(\{\alpha_2\}) = \frac{1}{2}$ and $\alpha_1 < \alpha_D < \alpha_2$.

Three steps:

- 1. Any random contract can be improved upon by a linear random contract. \checkmark
- 2. There exists an optimal linear contract. \checkmark
- 3. Enough to randomize over two linear contracts. \checkmark

Final Remarks

- Randomization strictly benefits the principal in robust moral hazard problems.
- Nevertheless, optimal random contract is still linear and "simple".
- Other extensions:
 - Results go through without participation constraint.
 - Screening doesn't help.
 - Value of randomization is unbounded.

Thank you!